Skip to main content

Bacterial Manganese and Iron Reduction in Aquatic Sediments

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 16))

Abstract

Over the past decade, the significance of bacteria in the biogeochemical manganese and iron cycles has gained broad appreciation. Particular interest has been devoted to the microbial reduction of oxidized Mn and Fe. The complete oxidation of organic compounds or H2 coupled to the reduction of Mn or Fe oxides has been demonstrated in sediments and pure cultures, and a large number of bacteria have been isolated that grow with oxidized Mn or Fe as sole terminal electron acceptor. The microbiology of manganese and iron reduction has been comprehensively reviewed in response to the development of the field (Lovley, 1987, 1991, 1993, 1995; Ghiorse, 1988; Nealson and Myers, 1992; Nealson and Saffarini, 1994; Ehrlich, 1996; Lovley etal, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtnich C., Bak F., and Conrad, R., 1995, Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil, Biol. Fertil Soils 19:65–72.

    Google Scholar 

  • Aguilar, C, and Nealson, K. H., 1994, Manganese reduction in Oneida Lake, New York: Estimates of spatial and temporal manganese flux, Can. J. Fish. Aquat. Sci. 51:185–196.

    Google Scholar 

  • Aller, R. C, 1980, Diagenetic processes near the sediment-water interface of Long Island Sound. II. Fe and Mn, Adv. Geophys. 22:351–415.

    Google Scholar 

  • Aller, R. C, 1990, Bioturbation and manganese cycling in hemipelagic sediments, Phil Trans. R. Soc. London A331:51–58.

    Google Scholar 

  • Aller, R. C, 1994, The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2 and Corg flux on diagenetic reaction balance, J. Mar. Res. 52:259–295.

    Google Scholar 

  • Aller, R. C, and Rude, R D., 1988, Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments, Geochim. Cosmochim. Acta 52:751–765.

    Google Scholar 

  • Aller, R. C, Mackin J. E., and Cox R. T., Jr., 1986, Diagenesis of Fe and S in Amazon inner shelf muds: Apparent dominance of Fe reduction and implications for the genesis of ironstones, Cont. Shelf Res. 6:263–289.

    Google Scholar 

  • Aller, R. C, Aller J. Y., Blair N. E., Mackin J. E., Rude P. D., Stupakoff I., Patchineelam S., Boehme S. E., and Knoppers, B., 1991, Biogeochemical processes in Amazon shelf sediments, Oceanography 1991:27–32.

    Google Scholar 

  • Aller, R. C, Blair N. E., Xia Q., and Rude, P. D., 1996, Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments, Cont. Shelf Res. 16:753–786.

    Google Scholar 

  • Arnold R. G., DiChristina T. J., and Hoffmann, M. R., 1986, Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 (“Pseudomonas ferrireductans”, Appl. Environ. Microbiol. 52:281–289.

    Google Scholar 

  • Arnold R. G., DiChristina T. J., and Hoffmann, M. R., 1988, Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200, Biotechnol. Bioeng. 32:1081–1096.

    Google Scholar 

  • Balashova V. V., and Zavarzin, G. A., 1979, Anaerobic reduction of ferric iron by hydrogen bacteria, Mikrobiologia 48:773–778.

    Google Scholar 

  • Balistrieri L. S., and Murray, J. W., 1982, The surface chemistry of δMnO2 in major ion seawater, Geochim. Cosmochim. Acta 46:1041–1052.

    Google Scholar 

  • Bender M. L., and Heggie, D. T, 1984, Fate of organic carbon reaching the deep-sea floor: A status report, Geochim. Cosmochim. Acta 48:977–986.

    Google Scholar 

  • Benz M., Schink B., and Brune, A., 1998, Humic acid reduction by Propionibacteriumfreudenreichii and other fermenting bacteria, Appl. Environ. Microbiol. 64:4507–4512.

    Google Scholar 

  • Berner, R. A., 1981, Authigenic mineral formation resulting from organic matter decomposition in modern sediments, Fortschr. Mineral. 59:117–135.

    Google Scholar 

  • Boone D. R., Liu, Y T, Zhao, Z.-J., Balkwill D. L., Drake, G. R., Stevens T. O., and Aldrich, H. C., 1995, Bacillus infernus sp. nov., an Fe(III)-and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface, Int. J. Syst. Microbiol. 45:441–448.

    Google Scholar 

  • Boudreau, B. P., 1994, Is burial velocity a master parameter for bioturbation? Geochim. Cosmochim. Acta 58:1243–1249.

    Google Scholar 

  • Boudreau, B. P., 1997, Diagenetic Models and Their Implementation, Springer, Berlin.

    Google Scholar 

  • Boudreau, B. P., 1998, Mean mixed depth of sediments—The wherefore and the why, Limnol. Oceanogr. 43:524–526.

    Google Scholar 

  • Boughriet A., Figueiredo R. S., Laureyns J., and Recourt, P., 1997, Identification of newly generated iron phases in recent anoxic sediments: 57Fe Mössbauer and micro-Raman spetroscopic studies, J. Chem. Soc. Faraday Trans. 93:3209–3215.

    Google Scholar 

  • Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., and McMeekin, T. A., 1997, Shewanella gelidimarina sp. nov. and Shewanellafrigidimarina sp. nov., novel Antarctic species with the ability to produce eicopentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction, Int. J. Syst. Microbiol. 47:1040–1047.

    Google Scholar 

  • Brock T. D., and Gustafson, J., 1976, Ferric iron reduction by sulfur-and iron-oxidizing bacteria, Appl. Environ. Microbiol. 32:567–571.

    Google Scholar 

  • Bromfield, S. M., 1954, Reduction of ferric compounds by soil bacteria, J. Gen. Microbiol. 11:1–6.

    Google Scholar 

  • Burdige, D. J., 1993, The biogeochemistry of manganese and iron reduction in marine sediments, Earth Sci. Rev. 35:249–284.

    Google Scholar 

  • Burdige D. J., Dhakar S. P., and Nealson, K. H., 1992, Effects of manganese oxide mineralogy on microbial and chemical manganese reduction, Geomicrobiol. J. 10:27–48.

    Google Scholar 

  • Burns R. G., and Burns, V. M., 1979, Manganese oxides, in: Marine Minerals (R. G. Burns, ed.), Reviews in Mineralogy, vol. 6, Mineralogy Society of America, Washington DC, pp. 1–46.

    Google Scholar 

  • Caccavo, F, Jr., Blakemore R. P., and Lovley, D. R., 1992, A hydrogen-oxidizing, Fe(III)-reducing microorganism form the Great Bay Estuary, New Hampshire, Appl. Environ. Microbiol. 58:3211–3216.

    Google Scholar 

  • Caccavo, E, Jr., Coates J. D., Rosselló-Mora R. A., Ludwig W., Schleifer K. H., Lovley D. R., and McInerney, M. J., 1996, Geovibrioferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium, Arch. Microbiol. 165:370–376.

    Google Scholar 

  • Caccavo, F, Jr., Schamberger, P. C, Keiding K., and Nielsen, P. H., 1997, Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide, Appl. Environ. Microbiol. 63:3837–3843.

    Google Scholar 

  • Canfield, D. E., 1988, Sulfate reduction and the diagenesis of iron in anoxic marine sediments, Ph.D. thesis, Yale University, New Haven.

    Google Scholar 

  • Canfield, D. E., 1989, Reactive iron in marine sediments, Geochim. Cosmochim. Acta 53:619–632.

    Google Scholar 

  • Canfield, D. E., 1993, Organic matter oxidation in marine sediments, in: Interactions of C, N, P, and S Biogeochemical Cycles and Global Change (R. Wollast, F. T. Mackenzie, and L. Chou, eds.), NATO ASI Series, vol. 14, Springer, Berlin, pp. 333–363.

    Google Scholar 

  • Canfield, D. E., 1997, The geochemistry of river particulates from the continental USA: Major elements, Geochim. Cosmochim. Acta 61:3349–3365.

    Google Scholar 

  • Canfield D. E., and Berner, R. A., 1987, Dissolution and pyritization of magnetite in anoxic marine sediments, Geochim. Cosmochim. Acta 51:645–659.

    Google Scholar 

  • Canfield D. E., Raiswell R., and Bottrell, S., 1992, The reactivity of sedimentary iron minerals toward sulfide, Am. J. Sci. 292:659–683.

    Google Scholar 

  • Canfield D. E., Jørgensen B. B., Fossing H., Glud R., Gundersen J., Ramsing N. B., Thamdrup B., Hansen J. W., Nielsen L. P., and Hall, P. O. J., 1993a, Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol. 113:27–40.

    Google Scholar 

  • Canfield D. E., Thamdrup B., and Hansen, J. W., 1993b, The anaerobic degradation of organic matter in Danish coastal sediments: Fe reduction, Mn reduction and sulfate reduction, Geochim. Cosmochim. Acta 57:2563–2570.

    Google Scholar 

  • Chapelle F. H., and Lovley, D. R., 1990, Rates of microbial metabolism in deep coastal plain aquifers, Appl. Environ. Microbiol. 56:1865–1874.

    Google Scholar 

  • Childs, C. W., 1992, Ferrihydrite: A review of structure, properties and occurrence in relation to soils, Z. Pflanzenernähr. Bodenk. 155:441–448.

    Google Scholar 

  • Coates J. D., Anderson R. T., Woodward, J. C, Phillips, E. J. P., and Lovley, D. R., 1996a, Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions, Environ. Sci. Technol. 30:2784–2789.

    Google Scholar 

  • Coates J. D., Phillips, E. J. P., Lonergan D. J., Jenter H., and Lovley, D. R., 1996b, Isolation of Geobacter species from diverse sedimentary environments, Appl. Environ. Microbiol. 62:1531–1536.

    Google Scholar 

  • Coates J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E., and Lovley, D. R., 1998, Recovery of humic-reducing bacteria from a diversity of environments, Appl. Environ. Microbiol. 64:1504–1509.

    Google Scholar 

  • Coleman M. L., Hedrick D. B., Lovley D. R., White, D. C, and Pye, K., 1993, Reduction of Fe(III) in sediments by sulfate-reducing bacteria, Nature 361:436–438.

    Google Scholar 

  • Colwell F. S., Onstott, T. C, Delwiche M. E., Chandler D., Fredrickson J. K., Yao, Q.-J., McKinley J. P., Boone D. R., Griffiths R., Phelps T. J., Ringelberg D., White, D. C, LaFreniere L., Balk-will D., Lehman R. M., Konisky J., and Long, P. E., 1997, Microorganisms from deep, high temperature sandstones—Constraints on microbial colonization, FEMS Microbiol. Rev. 20:425–435.

    Google Scholar 

  • Cord-Ruwisch R., Lovley D. R., and Schink, B., 1998, Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners, Appl. Environ. Microbiol. 64:2232–2236.

    Google Scholar 

  • Cornell R. M., and Schwertmann, U., 1996, The Iron Oxides, VCH, Weinheim.

    Google Scholar 

  • Davison, W., 1992, Iron particles in freshwater, in: Environmental Particles, vol. 1 (J. Buffle and H. P. van Leeuwen, eds), Lewis, Boca Raton, FL, pp. 315–355.

    Google Scholar 

  • De Vitre R. R., and Davison, W, 1993, Manganese particles in freshwater, in: Environmental Particles, vol. 2 (H. P. van Leeuwen and J. Buffle, eds), Lewis, Boca Raton, FL, pp. 317–352.

    Google Scholar 

  • DiChristina T. J., and DeLong, E. F., 1993, Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron-and manganese-reducing bacterium Shewanella putrefaciens, Appl. Environ. Microbiol. 59:4152–4160.

    Google Scholar 

  • DiChristina T. J., Arnold R. G., Lidstrom M. E., and Hoffmann, M. R., 1988, Dissimilative iron reduction by the marine eubacterium Alteromonas putrefaciens strain 200, Wat. Sci. Tech. 20:69–79.

    Google Scholar 

  • Dobbin P. S., Powell A. K., McEwan A. G., and Richardson, D. J., 1995, The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens, Biometals 8:163–173.

    Google Scholar 

  • Dobbin P. S., Burmeister, L. M. R., Heath S. L., Powell A. K., McEwan A. G., and Richardson, D. J., 1996, The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. Part 2. oxo-hydroxo-bridged polynuclear Fe(III) complexes, Biometals 9:291–301.

    Google Scholar 

  • dos Santos Afonso M., and Stumm, W, 1992, Reductive dissolution of iron(III) (Hydr)oxides by hydrogen sulfide, Langmuir 8:1671–1675.

    Google Scholar 

  • Drodt M., Trautwein A. X., König I., Suess E., and Koch, C. B., 1997, Mössbauer spectroscopic studies on the iron forms of deep-sea sediments, Phys. Chem. Miner. 24:281–293.

    Google Scholar 

  • Ehrlich, H. L., 1993, Electron transfer from acetate to the surface of MnO2 particles by a marine bacterium, J. Ind. Microbiol. 12:121–128.

    Google Scholar 

  • Ehrlich, H. L., 1996, Geomicrobiology, Marcel Dekker, New York.

    Google Scholar 

  • Elderfield H., Caffrey, R. J. M., Luedtke N., Bender M., and Truesdale, V. W, 1976, Early diagenesis in Narragansett Bay sediments, Am. J. Sci. 281:1021–1055.

    Google Scholar 

  • Finster K., and Bak, F., 1993, Complete oxidation of propionate, valerate, succinate, and other organ ic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubacteria, Appl. Environ. Microbiol 59:1452–1460.

    Google Scholar 

  • Fischer, W. R., 1973, Die Wirkung Von zweiwertigem Eisen auf Lösung und Umwandlung Von Eisen(III)-hydroxiden, in: Pseudogley and Gley (E. Schlichting and U. Schwertmann, eds.), Verlag Chemie, Weinheim, pp. 37–44.

    Google Scholar 

  • Friedl G., Wehrli B., and Manceau, A., 1997, Solid phases in the cycling of manganese in eutrophic lakes: New insights from EXAFS spectroscopy, Geochim. Cosmochim. Acta 61:275–290.

    Google Scholar 

  • Ghiorse, W. C, 1988, Microbial reduction of manganese and iron, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), Wiley, New York. pp. 305–331.

    Google Scholar 

  • Ghiorse, W. C, and Ehrlich, H. L., 1986, Electron transport components of the MnO2 reductase system and location of the terminal reductase in a marine Bacillus, Appl. Environ. Microbiol. 31:977–985.

    Google Scholar 

  • Glud R. N., Rysgaard S., Rysgaard-Petersen N., Thamdrup B., and Fossing H., Benthic carbon mineralization in a high-arctic fjord (Young Sound, Greenland), submitted.

    Google Scholar 

  • Grantham M. C., Dove, R M., and DiChristina, T. J., 1997, Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings, Geochim. Cosmochim. Acta 61:4467–4477.

    Google Scholar 

  • Greene, A. C, Patel, B. K. C., and Sheehy, A. J., 1997, Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir, Int. J. Syst. Microbiol. 47:505–509.

    Google Scholar 

  • Haese R. R., Wallmann K., Dahmke A., Kretzmann U., Müller P. J., and Schulz, H. D., 1997, Iron species determination to investigate early diagenetic reactivity in marine sediments, Geochim. Cosmochim. Acta 61:63–72.

    Google Scholar 

  • Hansen, H. C. B., Borggaard O. K., and Sørensen, J., 1994, Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite, Geochim. Cosmochim. Acta 58:2599–2608.

    Google Scholar 

  • Hashimoto K., and Misawa, T., 1973, Solubility of γ-FeOOH in perchloric acid at 25°C, Corrosion Sei 13:229–231.

    Google Scholar 

  • Heller-Kallai, L. 1997, Reduction and reoxidation of nontronite: The data reassessed, Clays Clay Miner. 45:476–479.

    Google Scholar 

  • Hider R. C., and Hall, A. D., 1991, Clinically useful chelators of tripositive elements, Progr. Med. Chem. 28:41–161.

    Google Scholar 

  • Hines M. E., and Jones, G. E., 1985, Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire, Estuar. Coast. Shelf Sci. 20:729–742.

    Google Scholar 

  • Hines M. E., Faganeli J., and Planinc, R., 1997, Sedimentary anaerobic microbial biogeochemistry in the Gulf of Trieste, northern Adriatic Sea: influences of bottom water oxygen depletion, Biogeochemistry 39:65–86.

    Google Scholar 

  • Hoehler, T. M., 1998, Thermodynamics and the role of hydrogen in anoxic sediments, Ph.D. thesis, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Hoehler T. M., Alperin M. J., Albert D. B., and Martens, C. S., 1998, Thermodynamic control on hydrogen concentration in anoxic sediments, Geochim. Cosmochim. Acta 62:1745–1756.

    Google Scholar 

  • Holmér, B. A., Sison J. D., Nelson, D. C, and Casey, W. H., 1999, Hydroxamate siderophores, cell growth, and Fe(III) cycling in two anaerobic iron oxide media containing Geobacter metallire-duceus, Geochim. Cosmochim. Acta 63:227–239.

    Google Scholar 

  • Howeler R. H., and Bouldin, D. H., 1971, The diffusion and consumption of oxygen in submerged soil, Proc. Soil Sci. Soc. Am. 35:202–208.

    Google Scholar 

  • Jenne, E. A., 1968, Controls onMn, Fe,Co, Ni, Cu, and Zn concentrations in soils and water: The significant role of hydrous Mn and Fe oxides, Adv. Chem. Sen 73:337–388.

    Google Scholar 

  • Jones J. G., Gardener S., and Simon, B. M., 1983, Bacterial reduction to ferric iron in a stratified eutrophic lake, J. Gen. Microbiol. 129:131–139.

    Google Scholar 

  • Jones J. G., Gardener S., and Simon, B. M., 1984, Reduction of ferric iron by heterotrophic bacteria in lake sediments, J. Gen. Microbiol. 130:45–51.

    Google Scholar 

  • Jørgensen, B. B., 1978, A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. measurement with radiotracer techniques. Geomicrobiol. J. 1:11–27.

    Google Scholar 

  • Jørgensen, B. B., 1982, Mineralization of organic matter in the sea bed—Role of sulphate reduction, Nature 296:643–645.

    Google Scholar 

  • Jørgensen, B. B., 1983, The microbial sulfur cycle, in: Microbial Geochemistry (W. E. Krumbein, ed.), Blackwell, Oxford, pp. 91–124.

    Google Scholar 

  • Kamura T., Takai Y., and Ishikawa, K., 1963, Microbial reduction mechanism of ferric iron in paddy soils (Part I), Soil Sci. Plant Nutr. (Tokyo) 9:171–175.

    Google Scholar 

  • King, G. M., 1990, Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments, FEMS Microbiol Ecol 73:131–138.

    Google Scholar 

  • Kino K., and Usami, S., 1982, Biological reduction of ferric iron by iron-and sulfur-oxidizing bacteria, Agric. Biol Chem. 46:803–805.

    Google Scholar 

  • Komadel P., Madejova J., and Stucki, J. W., 1995, Reduction and reoxidation of nontronite: Questions of reversibility, Clays Clay Miner. 43:105–110.

    Google Scholar 

  • König I., Drodt M., Suess E., and Trautwein, A. X., 1997, Iron reduction through the tan-green color transition in deep-sea sediments, Geochim. Cosmochim. Acta 61:1679–1683.

    Google Scholar 

  • Kostka, J. E., 1997, Rates and pathways of microbial respiration in sediments of the South Atlantic, Abstr. Gen. Meet. Am. Soc. Microbiol. 97:365 (poster available at http://www.skio.peachnet.edu/spsed/spsed.html.)

    Google Scholar 

  • Kostka J. E., Haefele E., Vieweger R., and Stucki, J. W., 1999, Respiration and dissolution of iron (III)-containing clay minerals by bacteria, Environ. Sci. Technol 33:3127–3133.

    Google Scholar 

  • Kostka J. E., and Luther G. W., III, 1994, Partitioning and speciation of solid phase iron in saltmarsh sediments, Geochim. Cosmochim. Acta 58:1701–1710.

    Google Scholar 

  • Kostka J. E., and Nealson, K. H., 1995, Dissolution and reduction of magnetite by bacteria, Environ. Sci Technol. 29:2535–2540.

    Google Scholar 

  • Kostka J. E., Luther G. W., and Nealson, K. H., 1995, Chemical and biological reduction of Mn(III)-pyrophosphate complexes: potential importance of dissolved Mn(III) as an environmental oxidant, Geochim. Cosmochim. Acta 59:885–894.

    Google Scholar 

  • Kostka J. E., Stucki J. W., Nealson K. H., and Wu, J., 1996, Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1, Clays Clay Miner. 44:522–529.

    Google Scholar 

  • Kostka J. E., Thamdrup B., Glud R. N., and Canfield, D. E., 1999, Rates and pathways of carbon oxidation in permanently cold arctic sediments, Mar. Ecol Progr. Sen, 180:7–21.

    Google Scholar 

  • LaKind J. S., and Stone, A. T, 1989, Reductive dissolution of goethite by phenolic reductants, Geochim. Cosmochim. Acta 53:961–971.

    Google Scholar 

  • Langmuir, D., 1971, Particle size effect on the reaction goethite = hematite + water, Am. J. Sci. 271:147–156.

    Google Scholar 

  • Laverman A. M., Blum J. S., Schaefer J. K., Phillips, E. J. P., Lovley D. R., and Oremland, R. S., 1995, Growth of strain SES-3 with arsenate and other diverse electron acceptors, Appl. Environ. Microbiol. 61:3556–3561.

    Google Scholar 

  • Liu S. V., Zhou J. Z., Zhang C. L., Cole D. R., Gajdarziska-Josifovska M., and Phelps, T. J., 1997, Thermophilic Fe(III)-reducing bacteria from the deep subsurface—The evolutionary implications, Science 277:1106–1109.

    Google Scholar 

  • Lonergan D. J., Jenter H. L., Coates J. D., Phillips, E. J. P., Schmidt T. M., and Lovley, D. R., 1996, Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria, J. Bacteriol 178:2402–2408.

    Google Scholar 

  • Lovley, D. R., 1987, Organic matter mineralization with the reduction of ferric iron: A review, Geomicrobiol J. 5:375–399.

    Google Scholar 

  • Lovley, D. R., 1991, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol Rev. 55:259–287.

    Google Scholar 

  • Lovley, D. R., 1993, Dissimilatory metal reduction, Ann. Rev. Microbiol 47:263–290.

    Google Scholar 

  • Lovley, D. R., 1995, Microbial reduction of iron, manganese, and other metals, Adv. Agron. 54:175–231.

    Google Scholar 

  • Lovley, D. R., 1997, Microbial Fe(III) reduction in subsurface environments, FEMS Microbiol Rev. 20:305–313.

    Google Scholar 

  • Lovley D. R., and Goodwin, S., 1988, Hydrogen concentration as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments, Geochim. Cosmochim. Acta 52:2993–3003.

    Google Scholar 

  • Lovley D. R., and Klug, M. J., 1986, Model for the distribution of sulfate reduction and methanogenesis in fresh water sediments, Geochim. Cosmochim. Acta 50:11–18.

    Google Scholar 

  • Lovley D. R., and Phillips, E. J. P., 1986a, Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River, Appl. Environ. Microbiol. 52:751–757.

    Google Scholar 

  • Lovley D. R., and Phillips, E. J. P., 1986b, Organic matter mineralization with reduction of ferric iron in anaerobic sediments, Appl. Environ. Microbiol. 51:683–689.

    Google Scholar 

  • Lovley D. R., and Phillips, E. J. P., 1987a, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments, Appl. Environ. Microbiol. 53:2636–2641.

    Google Scholar 

  • Lovley D. R., and Phillips, E. J. P., 1987b, Rapid assay for microbially reducible ferric iron in aquatic sediments, Appl. Environ. Microbiol. 53:1536–1540.

    Google Scholar 

  • Lovley D. R., and Phillips, E. J. P., 1988a, Manganese inhibition of microbial iron reduction in anaerobic sediments, Geomicrobiol. J. 6:145–155.

    Google Scholar 

  • Lovley D. R., and Phillips, E. J. P., 1988b, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol. 54:1472–1480.

    Google Scholar 

  • Lovley D. R., and Phillips, E. J. P., 1989, Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments, Appl. Environ. Microbiol. 55:3234–3236.

    Google Scholar 

  • Lovley D. R., and Phillips, E. J. P., 1994, Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria, Appl. Environ. Microbiol. 60:2394–2399.

    Google Scholar 

  • Lovley D. R., and Woodward, J. C, 1996, Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction, Chem. Geol. 132:19–24.

    Google Scholar 

  • Lovley D. R., Phillips, E. J. P., and Lonergan, D. J., 1989, Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol. 55:700–706.

    Google Scholar 

  • Lovley D. R., Phillips E. J. P., and Lonergan D. J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments, Environ. Sci. Technol. 25:1062–1067.

    Google Scholar 

  • Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips, E. J. P., Gorby Y. A., and Goodwin, S., 1993, Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals, Arch. Microbiol. 159:336–344.

    Google Scholar 

  • Lovley D. R., Woodward J. C., and Chapelle, F. H., 1994, Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands, Nature 370:128–131.

    Google Scholar 

  • Lovley D. R., Phillips, E. J. P., Lonergan D. J., and Widman, P. K., 1995, Fe(III) and S° reduction by Pelobacter carbinolicus, Appl Environ. Microbiol. 61:2132–2138.

    Google Scholar 

  • Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips, E. J. P., and Woodward, J. C, 1996, Humic substances as electron acceptors for microbial respiration, Nature 382:445–448.

    Google Scholar 

  • Lovley D. R., Coates J. D., Saffarini D. A., and Lonergan, D. J., 1997, Dissimilatory iron reduction, in: Transition Metals in Microbial Metabolism (G. Winkelmann and C. J. Carrano, eds.), Harwood Academic Publishers, Amsterdam, pp. 187–215.

    Google Scholar 

  • Lovley D. R., Fraga J. L., Blunt-Harris E. L., Hayes L. A., Phillips, E. J. P., and Coates, J. D., 1998, Humic substances as a mediator for microbially catalyzed metal reduction, Acta Hydrochim. Hydrobiol 26:152–157.

    Google Scholar 

  • Luther G. W., III, Kostka J. E., Church T. M., Sulzberger B., and Stumm, W, 1992, Seasonal iron cycling in the salt marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) of Fe(III) minerals and pyrite, respectively, Mar. Chem. 40:81–103.

    Google Scholar 

  • Luther G. W., III, Nuzzio D., and Wu, L, 1995, Speciation of manganese in Chesapeake Bay waters by voltammetric methods, Anal. Chim. Acta 284:473–480.

    Google Scholar 

  • Luther G. W., III, Schellenbarger P. A., and Brendel, P. J., 1996, Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters, Geochim. Cosmochim. Acta 60:951–960.

    Google Scholar 

  • Luther G. W., III, Sundby B., Lewis B. L., Brendel P. J., and Silverberg, N., 1997, Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen, Geochim. Cosmochim. Acta 61:4043–4052.

    Google Scholar 

  • Lyle, M., 1983, The brown-green color transition in marine sediments: A marker of the Fe(III)-Fe(II) redox boundary, Limnol. Oceanogr. 28:1026–1033.

    Google Scholar 

  • Martell A. E., and Smith, R. M., 1974, Critical Stability Constants, vol. 1, Plenum Press, New York.

    Google Scholar 

  • Martell A. E., and Smith, R. M., 1982, Critical Stability Constants, vol. 5, Plenum Press, New York.

    Google Scholar 

  • Martin J.-M., and Meybeck M., 1979, Elemental mass-balance of material carried by major world rivers. Mar. Chem. 7:173–206.

    Google Scholar 

  • Michalopoulos P., and Aller, R. C, 1995, Rapid clay mineral formation in Amazon Delta sediments: reverse weathering and oceanic element cycles, Science 270:614–617.

    Google Scholar 

  • Millero, F. J., 1998, Solubility of Fe(III) in seawater, Earth Planet. Sci Lett. 154:323–329.

    Google Scholar 

  • Millero F. J., Yao W., and Aicher, J., 1995, The speciation of Fe(II) and Fe(III) in natural waters, Mar. Chem. 50:21–39.

    Google Scholar 

  • Moeslund L., Thamdrup B., and Jørgensen, B. B., 1994, Sulfur and iron cycling in a coastal sediment: Radiotracer studies and seasonal dynamics, Bio geochemistry 27:129–152

    Google Scholar 

  • Morgan J. J., and Stumm, W., 1964, Colloid-chemical properties of manganese dioxide, J. Colloid Sci. 19:347–359.

    Google Scholar 

  • Munch, J. C, and Ottow, J. C. G., 1982, Einfluß Von Zellkontakt und Eisen(III)-Oxidform auf die bakterielle Eisenreduktion, Z. Pflanzenernaehr. Bodenk. 145:66–77.

    Google Scholar 

  • Murray, J. W., 1979, Iron oxides, in: Marine Minerals (R. G. Burns, ed.), Reviews in Mineralogy, vol. 6, Mineralogical Society of America Washington DC, pp. 47–97.

    Google Scholar 

  • Myers C. R., and Myers, J. M., 1992, Localization of cytochromes to the outer membrane of anaerobically grown Shewanellaputrefaciens MR-1, J. Bacteriol. 174:3429–3438.

    Google Scholar 

  • Myers C. R., and Nealson, K. H., 1988a, Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor, Science 240:1319–1321.

    Google Scholar 

  • Myers C. R., and Nealson, K. H., 1988b, Microbial reduction of manganese oxides: Interactions with iron and sulfur, Geochim. Cosmochim. Acta 52:2727–2732.

    Google Scholar 

  • Naik R. R., Murillo F. M., and Stolz, J. F., 1993, Evidence for a novel nitrate reductase in the dissimilatory iron-reducing bacterium Geobacter metallireducens, FEMS Microbiol. Lett. 106:53–58.

    Google Scholar 

  • Nealson K. H., and Myers, C. R., 1992, Microbial reduction of manganese and iron: New approaches to carbon oxidation, Appl. Environ. Microbiol. 58:439–443.

    Google Scholar 

  • Nealson K. H., and Saffarini, D., 1994, Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation, Annu. Rev. Microbiol 48:311–443.

    Google Scholar 

  • Nealson K. H., Myers C. R., and Wimpee, 1991, Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea, Deep-Sea Res 38:S907–S920.

    Google Scholar 

  • Obuekwe C. O., and Westlake, 1982, Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude oil, Can. J. Microbiol. 28:989–992.

    Google Scholar 

  • Ottow, J. C. G., and Munch, J. C, 1981, Role of bacterial enzymes in the reductive dissolution of amorphous and crystalline iron-compounds, in: Colloques Internationaux du C.N.R.S. no. 303, Nancy 1978, Editions du Centre National de la Recherche Scientifique, Paris, France, pp. 189–19

    Google Scholar 

  • Overnell J., Harvey S. M., and Parkes, R. J., 1996, A biogeochemical comparison of sea loch sediments. Manganese and iron contents, sulphate reduction and oxygen uptake rates, Oceanol. Acta 19:41–55.

    Google Scholar 

  • Peiffer S., dos Santos Afonso M., Wehrli B., and Gächter, R., 1992, Kinetics and mechanism of the reaction of H2S with lepidocrocite, Environ. Sci. Technol 26:2408–2413.

    Google Scholar 

  • Petersen, S. O., 1993, Influence of liquid cattle manure on reduction processes in soil, Biol. Fertil. Soils 15:137–143.

    Google Scholar 

  • Phillips, E. J. P., and Lovley, D. R., 1987, Determination of Fe(III) and Fe(II) in oxalate extracts of sediments, Soil Sci. Soc. Am. J. 51:938–941.

    Google Scholar 

  • Phillips, E. J. P., Lovley D. R., and Roden, E. E., 1993, Composition of nonmicrobially reducible Fe(III) in aquatic sediments, Appl. Environ. Microbiol. 59:2727–2729.

    Google Scholar 

  • Ponnamperuma, F. N., 1972, The chemistry of submerged soils, Adv. Agron. 24:29–96.

    Google Scholar 

  • Postma, D., 1985, Concentrations of Mn and separation from Fe in sediments-1. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C, Geochim. Cosmochim. Acta 49:1023–1033.

    Google Scholar 

  • Postma D., and Jakobsen, R., 1996, Redox zonation—Equilibrium constraints on the Fe(III)/SO2-4 reduction interface, Geochim. Cosmochim. Acta 60:3169–3175.

    Google Scholar 

  • Pyzik A. J., and Sommer, S. E., 1981, Sedimentary iron monosulfides: kinetics and mechanism of formation, Geochim. Cosmochim. Acta 45:687–698.

    Google Scholar 

  • Raiswell R., and Canfield, D. E., 1998, Sources of iron for pyrite formation in marine sediments, Am. J. Sci. 298:219–245.

    Google Scholar 

  • Rasmussen H., and Jørgensen, B. B., 1992, Microelectrode studies of seasonal oxygen uptake in a coastal sediment: Role of molecular diffusion, Mar. Ecol. Progr. Ser. 81:289–303.

    Google Scholar 

  • Reimers C. E., Jahnke R. A., and McCorkle, D. C, 1992, Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle, Global Biogeochem. Cycles 6:199–224.

    Google Scholar 

  • Rickard, D. T., 1974, Kinetics and mechanisms of the sulfidization of goethite, Am. J. Sci. 275:636–652.

    Google Scholar 

  • Robbins J. A., and Callender, E., 1975, Diagenesis of manganese in Lake Michigan sediments, Am. J. Sci. 275:512–533.

    Google Scholar 

  • Roden E. E., and Lovley, D. R., 1993a, Dissimilatory Fe (III) reduction by the marine microorganism Desulfuromonas acetoxidans, Appl. Environ. Microbiol. 59:734–742.

    Google Scholar 

  • Roden E. E., and Lovley, D. R., 1993b, Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments, Geomicrobiol. J. 11:49–56.

    Google Scholar 

  • Roden E. E., and Wetzel, R. G., 1996, Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments, Limnol. Oceanogr. 41:1733–1748.

    Google Scholar 

  • Roden E. E., and Zachara, J. M., 1996, Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth, Environ. Sci. Technol. 30:1618–1628.

    Google Scholar 

  • Runov, E. V., 1926, Die Reduction der Eisenoxyde auf microbiologischem Wege, Ber. Bacteriol-Agron. Station Moskau 24:75–82.

    Google Scholar 

  • Rusin P. A., Quintana L., Sinclair N. A., Arnold R. G., and Oden, K. L., 1991, Physiology and kinetics of manganese-reducing Bacillus polymyxa strain D1 isolated from manganiferous silver ore, Geomicrobiol. J. 9:13–25.

    Google Scholar 

  • Rysgaard S., Thamdrup B., Risgaard-Petersen N., Fossing H., Christensen P. B., and Dalsgaard, T., 1998, Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland, Mar. Ecol. Progr. Ser. 175:261–276.

    Google Scholar 

  • Schaller T., and Wehrli, B., 1996, Geochemical-focusing of manganese in lake sediments—An indicator of deep-water oxygen conditions, Aq. Geochem. 2:359–378.

    Google Scholar 

  • Schink, B., 1992, The genus Pelobacter, in: The Prokaryotes, 2nd ed. (A. Balows, H. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), Springer, Berlin, pp. 583–624.

    Google Scholar 

  • Schwertmann, U., 1988, Some properties of soil and synthetic iron oxides, in: Iron in Soils and Clay Minerals (J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds.), D. Reidel, Dordrecht, pp. 203–250.

    Google Scholar 

  • Schwertmann U., and Cornell, R. M., 1991, Iron Oxides in the Laboratory, VCH, Weinheim.

    Google Scholar 

  • Seeliger S., Cord-Ruwisch R., and Schink, B., 1998, A periplasmatic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria, J. Bacteriol 180:3686–3691.

    Google Scholar 

  • Segal M. G., and Sellers, R. M., 1984, Redox reactions at solid-liquid interfaces, Adv. Inorg. Bioinorg. Mech. 3:97–129.

    Google Scholar 

  • Slobodkin A., Reysenbach A. L., Strutz N., Dreier M., and Wiegel, J., 1997, Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a contaminated hot spring, Int. J. Syst. Microbiol 47:541–547.

    Google Scholar 

  • Slomp, C. R, Malschaert, J. F. R, Lohse L., and van Raaphorst, W., 1997, Iron and manganese cycling in different sedimentary environments on the North Sea continental margin, Cont. Shelf Res. 17:1083–1117.

    Google Scholar 

  • Smith R. W., and Jenne, E. A., 1991, Recalculation, evaluation, and prediction of surface complexa-tion constants for metal adsorption on iron and manganese oxides, Environ. Sci. Technol. 25:525–531.

    Google Scholar 

  • Sørensen, J., 1982, Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate, Appl. Environ. Microbiol. 43:319–324.

    Google Scholar 

  • Sørensen J., and Jørgensen, B. B., 1987, Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn-Fe-S geochemistry, Geochim. Cosmochim. Acta 51:1583–1590.

    Google Scholar 

  • Sørensen J., Christensen D., and Jørgensen, B. B., 1981, Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment, Appl. Environ. Microbiol. 42:5–11.

    Google Scholar 

  • Starkey R. L., and Halvorson, H. O., 1927, Studies on the transformations of iron in nature. II. concerning the importance of microorganisms in the solution and precipitation of iron, Soil Sci. 14:381–402.

    Google Scholar 

  • Stetter, K. O., 1996, Hyperthermophilic procaryotes, FEMS Microbiol. Rev. 18:149–158.

    Google Scholar 

  • Stone A. T., and Morgan, J. J., 1984, Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics, Environ. Sci. Technol. 18:617–624.

    Google Scholar 

  • Straub K. L., Benz M., Schink B., and Widdel, E, 1996, Anaerobic, nitrate-dependent microbial oxidation of ferrous iron, Appl. Environ. Microbiol. 62:1458–1460.

    Google Scholar 

  • Straub K. L., Hanzlik M., and Buchholz-Cleven, B. E. E., 1998, The use of biologically produced ferrihydrite for isolation of novel iron-reducing bacteria, System. Appl. Microbiol. 21:442–449.

    Google Scholar 

  • Stucki, J. W., 1988, Structural iron in smectites, in: Iron in Soils and Clay Minerals (J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds), D. Reidel, Dordrecht, pp. 625–676.

    Google Scholar 

  • Stucki J. W., Komadel, R, and Wilkinson, H. T, 1987, Microbial reduction of structural iron(III) in smectites, Soil Sci. Soc. Am. J. 51:1663–1665.

    Google Scholar 

  • Stumm W., and Morgan, J. J., 1981, Aquatic Chemistry, John Wiley and Sons, New York.

    Google Scholar 

  • Suess, E., 1979, Mineral phases formed in anoxic sediments by microbial decomposition of organic matter, Geochim. Cosmochim. Acta 43:339–352.

    Google Scholar 

  • Sulzberger B., Suter D., Siffert C., Banwart S., and Stumm, W., 1989, Dissolution of Fe(III) (hydroxides in natural waters; laboratory assessment on the kinetics controlled by surface coordination, Mar. Chem. 28:127–144.

    Google Scholar 

  • Sundby, B., 1977, Manganese-rich particulate matter in a coastal marine environment, Nature 270:417–419.

    Google Scholar 

  • Sundby B., and Silverberg, N., 1981, Pathways of manganese in an open estuarine system, Geochim. Cosmochim. Acta 45:293–307.

    Google Scholar 

  • Sundby B., and Silverberg, N., 1985, Manganese fluxes in the benthic boundary layer, Limnol Oceanogr. 30:372–381.

    Google Scholar 

  • Suter D., Siffert C., Sulzberger B., and Stumm, W., 1988, Catalytic dissolution of iron(III) (hydr)oxides by oxalic acid in the presence of Fe(II), Naturwissenschaften 75:571–573.

    Google Scholar 

  • Takai, Y, and Kamura, T., 1966, The mechanism of reduction in waterlogged paddy soil, Folia Microbiol 11:304–312.

    Google Scholar 

  • Takai Y., Koyama T., and Kamura, T., 1963a, Microbial metabolism in reduction process of paddy soils (Part 3), Soil Sci. Plant Nutr. (Tokyo) 9:207–211.

    Google Scholar 

  • Takai, Y, Koyama T., and Kamura, T., 1963b, Microbial metabolism in reduction process of paddy soils (Part 2), Soil Sci. Plant Nutr. (Tokyo) 9:176–185.

    Google Scholar 

  • Taylor, R. J., 1987, Manganese geochemistry in Galveston Bay sediment, Ph.D. thesis, Texas A&M University, College Station.

    Google Scholar 

  • Thamdrup B., and Canfield, D. E., 1996, Pathways of carbon oxidation in continental margin sediments off central Chile, Limnol. Oceanogr. 41:1629–1650.

    Google Scholar 

  • Thamdrup B., Fossing H., and Jørgensen, B. B., 1994a, Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark, Geochim. Cosmochim. Acta 58:5115–5129.

    Google Scholar 

  • Thamdrup B., Glud R. N., and Hansen, J. W., 1994b, Manganese oxidation and in situ fluxes from a coastal sediment, Geochim. Cosmochim. Acta 58:2563–2570.

    Google Scholar 

  • Thauer R. K., Jungermann K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.

    Google Scholar 

  • Trolard, E, Génin, J.-M. R., Abdelmoula M., Bourrié, G., Humbert B., and Herbillon, A., 1997, Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies, Geochim. Cosmochim. Acta 61:1107–1111.

    Google Scholar 

  • Tugel J. B., and Hines, M. E., 1986, Microbial iron reduction by enrichment cultures isolated from estuarine sediments, Appl. Environ. Microbiol. 52:1167–1172.

    Google Scholar 

  • Urrutia M. M., Roden E. E., Fredrickson J. K., and Zavhara, J. M., 1998, Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron-reducing bacterium Shewanella alga, Geomicrobiology 15:1–23.

    Google Scholar 

  • van Cappellen P., and Gaillard, J.-E, 1996, Biogeochemical dynamics in aquatic sediments, in: Reactive Transport in Porous Media (P. C. Lichtner, C. I. Steefel, and E. H. Oelkers, eds.), Reviews in Mineralogy, vol. 34, Mineralogy Society of America, Washington, DC, pp. 335–376.

    Google Scholar 

  • van Cappellen P., and Wang, Y E, 1996, Cycling of iron and manganese in surface sediments—A general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese, Am. J. Sci. 296:197–243.

    Google Scholar 

  • Vargas M., Kashefi K., Blunt-Harris E. L., and Lovley, D. R., 1998, Microbiological evidence for Fe(III) reduction on early Earth, Nature 395:65–67.

    Google Scholar 

  • Wallmann K., Hennies K., König I., Petersen, W, and Knauth, H. D., 1993, A new procedure for the determination of “reactive” ferric iron and ferrous iron minerals in sediments, Limnol. Oceanogr. 38:1803–1812.

    Google Scholar 

  • Wang, Y E, and van Cappellen, P., 1996, A multicomponent reactive transport model of early diagenesis—Application to redox cycling in coastal marine sediments, Geochim. Cosmochim. Acta 60:2993–3014.

    Google Scholar 

  • Wehrli B., Friedl G., and Manceau, A., 1995, Reaction rates and products of manganese oxidation at the sediment-water interface, in: Aquatic Chemistry: Principles and Applications of Interfacial and Inter-species Interactions in Aquatic Systems (C. P. Huang, C. O’Melia, and J. J. Morgan, eds.), Advances in Chemistry Series No. 244, American Chemical Society, Washington, DC, pp. 111–134.

    Google Scholar 

  • Westrich, J. T., 1983, The consequences and controls of bacterial sulfate reduction in marine sediments, Ph.D. thesis, Yale University, New Haven.

    Google Scholar 

  • Widdel, E, Schnell S., Heising S., Ehrenreich A., Assmus B., and Schink, B., 1993, Ferrous iron oxidation by anoxygenic phototrophic bacteria, Nature 362:834–836.

    Google Scholar 

  • Yao W., and Millero, E J., 1993, The rate of sulfide oxidation by δMnO2 in seawater, Geochim. Cosmochim. Acta 57:3359–3365.

    Google Scholar 

  • Yao W., and Millero, F. J., 1996, Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater, Mar. Chem. 52:1–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thamdrup, B. (2000). Bacterial Manganese and Iron Reduction in Aquatic Sediments. In: Schink, B. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4187-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4187-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6878-6

  • Online ISBN: 978-1-4615-4187-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics