Skip to main content

Volcanism on Earth’s Seafloor and Venus

  • Chapter
Environmental Effects on Volcanic Eruptions

Abstract

The surface of Venus, obscured by dense cloud cover, is similar in many ways to the seafloor that lies hidden beneath the deep waters of Earth’s oceans. Although both are difficult to observe, decades of research indicate that each surface is dominated primarily by basaltic volcanism. This is not surprising as Earth and Venus are similar in size, bulk density, and position in the solar system, and the probability of similar elemental abundances and internal heat sources implies corresponding similarity between their interior melting, magma production, and surface volcanism. Even though Earth’s seafloor and Venus are dissimilar in many ways, both environments are characterized by significantly elevated pressure at the surface resulting, respectively, from the burden imposed by the overlying ocean water and the weight of the dense atmosphere. This provides volcanologists with an excellent opportunity to examine how elevated surface pressure affects the development and behavior of volcanic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson, A., T. J. Griffin, and P. J. Stephenson, A major lava tube system from Undara Volcano, North Queensland, Bull. Volcanol., 39, 266–293, 1975.

    Article  Google Scholar 

  • Aubele, J. C., Venus small volcano classification and description. Lunar Planet. Sci., XXIV, 47–48, 1993.

    Google Scholar 

  • Aubele, J. C., Akkruva small shield plains: Definition of a significant regional plains unit on Venus, Lunar Planet, Sci., XXVII, 49–50, 1996.

    Google Scholar 

  • Aubele, J. C., and L. S. Crumpler, Shield fields: Concentrations of small volcanoes on Venus, LPI Contrib., 789, 7–8, 1992.

    Google Scholar 

  • Aubele, J. C., and E. N. Slyuta, Small domes on Venus: Characteristics and origin, Earth Moon Planets, 50/51, 493–532, 1990.

    Article  Google Scholar 

  • Baker, V. R., G. Komatsu, T. J. Parker, V. C. Gulick, J. S. Kargel. and J. S. Lewis, Channels and valleys on Venus: Preliminary analysis of Magellan data, J. Geophys. Res. 97 (E8), 13421–13444. 1992.

    Google Scholar 

  • Baker, V. R., G. Komatsu, V. Gulick, and T. J. Parker, Channels and valleys, in Venus II. edited by Bougher et al., pp. 757–793, University of Arizona Press, Tucson, 1997.

    Google Scholar 

  • Ballard, R. D., and J. G. Moore, Photographic Atlas of the Mid-Atlantic Ridge Rift Valley. Springer-Verlag, Berlin, 1978.

    Google Scholar 

  • Banerdt, W. B., G. E. McGill, and M. T. Zuber, Plains tectonics on Venus, in Venus II, edited by Bougher et al., pp. 901–968, University of Arizona Press, Tucson, 1997.

    Google Scholar 

  • Barsukov, V. L., A. T. Basilevsky, G. A. Burba, N. N. Bobinna, V. P. Kryuchkov, R. O. Kuzmin, O. V. Nikolaeva, A. A. Pronin, L. B. Ronca, I. M. Chernaya, V. P. Shashkina, A. V. Garanin, E. R. Kushky, M. S. Markov, A. L. Sukhanov, V. A. Kotelniokov, O. N. Rziga, G. M. Petrov, Y. N. Alexandrov, A. I. Sidorenko, A. F. Bogomolov, G. I. Skrypnik, M. Y. Bergman, L. V. Kudrin. I. M. Bokshtein, M. A. Kronrod, P. A. Chochia, Y S. Tyuflin, S. A. Kadnichansky, and E. Akim, L., The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16, Proc. Lunar Planet. Sci. Conf., XVI, J. Geophys. Res., 91, D378–D398, 1986.

    Article  Google Scholar 

  • Batiza, R., Abundance, distribution and sizes of volcanoes in the Pacific Ocean and implications for the origin of nonhotspot volcanoes, Earth Planet. Sci. Lett., 60. 196–206, 1982.

    Article  Google Scholar 

  • Batiza, R., and D. Vanko, Petrology of young Pacific seamounts. J. Geophys. Res., 89, 11235–11260, 1984.

    Article  Google Scholar 

  • Bemis, K. G., and D. K. Smith, Production of small volcanoes in the Superswell region of the South Pacific, Earth Planet. Sci., Lett., 118, 251–262, 1993.

    Article  Google Scholar 

  • Bindschadler, D. L., and E. M. Parmentier, Mantle flow tectonics: The influence of a ductile lower crust and implications for the formation of topographic uplands on Venus, J. Geophys. Res., 95, 21329–21344, 1990.

    Article  Google Scholar 

  • Blake S., Volcanism and dynamics of open magma chambers. Nature, 289, 783–785, 1981.

    Article  Google Scholar 

  • Bowen, A., D. Fornari, J. Howland, and B. Waiden. The Woods Hole Oceanographie Institution’s remotely-operated and towed vehicle facilities for deep ocean research. Version 1.0, 26 pp., Woods Hole Oceanographie Institute, Woods Hole, MA, 1993.

    Google Scholar 

  • Bridges, N. T., Submarine analogs to Venusian pancake domes, Geophys. Res. Lett., 22, 2781–2784, 1995.

    Article  Google Scholar 

  • Bridges, N. T., and J. H. Fink, Aspect ratios of lava domes on Earth, Moon, and Venus, Lunar Planet. Sci., XXVIII, 159–160, 1994.

    Google Scholar 

  • Bulmer, M. H., and J. E. Guest, Modified volcanic domes and associated debris aprons on Venus, in Volcano Instability on the Earth and Other Planets, Geol. Soc. London Spec. Publ. No. 110, edited by McGuire et al., pp. 349–372, The Geological Society, Bath, UK, 1996.

    Google Scholar 

  • Bulmer, M. H., K. Beratan, G. Michaels, and S. Saunders, Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits, LPI Contrib., 789. 14–15, 1992.

    Google Scholar 

  • Bulmer, M. H., G. Michaels, and S. Saunders, Scalloped margin domes: What are the processes responsible and how do they operate? Lunar Planet. Sci., XXIV. 177–178, 1993.

    Google Scholar 

  • Bussey, D. B. J., S. A. Sorensen, and J. E. Guest, Factors influencing the capability of lava to erode its substrate: Application to Venus, J. Geophys. Res., 100 (E8), 16941–16948, 1995.

    Article  Google Scholar 

  • Campbell, B. A., and D. B. Campbell, Analysis of volcanic surface morphology on Venus with comparison of Arecibo, Magellan, and terrestrial airborne radar data, J. Geophys. Res., 97, 16293–16314, 1992.

    Article  Google Scholar 

  • Campbell, B. A., and M. K. Shepard, Effect of Venus surface illumination on photographic image texture, Geophys. Res. Lett., 24, 731–734, 1997.

    Article  Google Scholar 

  • Campbell, B. A., L. Glaze, and P. G. Rogers, Pyroclastic deposits on Venus: Remote-sensing evidence and modes of formation, Abstract #1810 (CD-ROM), Lunar Planet. Sci., XXIX. 1998.

    Google Scholar 

  • Campbell, D. B., R. B. Dyce, and G. H. Pettengill, New radar image of Venus, Science, 193, 1123–1124, 1976.

    Article  Google Scholar 

  • Campbell, D. B., J. W. Head, A. A. Hine. J. K. Harmon, D. A. Senske, and P. C. Fisher, Styles of volcanism on Venus: New Arecibo high resolution radar data. Science, 246. 373–377, 1989.

    Article  Google Scholar 

  • Campbell, D. B., D. A. Senske, J. W. Head, A. A. Hine, and P. C. Fisher. Venus southern hemisphere: Character and age of terrains in the Themis-Alpha-Lada region. Science, 251. 180–183, 1991.

    Article  Google Scholar 

  • Cashman, K., H. Pinkerton, and J. Stephenson, Introduction to special section: Long lava flows, J. Geophys. Res., 103 (B11), 27281–27289, 1998.

    Article  Google Scholar 

  • Chadwick, W W., Jr., and M. R. Perfit, Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations, in Faulting and Magmatism at Mid-Ocean Ridges, edited by W. R. Buck, P. T. Delaney, J. A. Karson, and Y. Lagabrielle, Geophvs. Monogr. 106, pp. 59–116, American Geophysical Union, Washington, DC, 1998.

    Google Scholar 

  • Christensen, N. I., Seismic velocities, in Handbook of Physical Properties of Rocks, Volume II, edited by R. S. Carmichael, pp. 1–228, CRC Press, Boca Raton, FL, 1982.

    Google Scholar 

  • Clague, D. A., R. T. Holcomb, J. M. Sinton, R. S. Detrick, and M. E. Torresan, Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands, Earth Planet. Sci. Lett., 98, 175–191, 1990.

    Article  Google Scholar 

  • Crumpler, L. S., J. W. Head, and J. C. Aubele, Relation of major volcanic center concentration on Venus to global tectonic patterns, Science, 261, 591–598, 1993.

    Article  Google Scholar 

  • Cnimpler, L. S., J. C. Aubele, D. A. Senske, S. W. Keddie, K. Magee, and J. W. Head, Volcanoes and centers of volcanism on Venus, in Venus II, edited by Bougher et al., pp. 697–756, University of Arizona Press, Tucson, 1997.

    Google Scholar 

  • Davis, E. E., Evidence for extensive basalt flow on the sea floor, Geol. Soc. Am. Bull., 93, 1023–1029, 1982.

    Article  Google Scholar 

  • Ernst, R. E., J. W. Head, E. Parfitt, E. B. Grosfils, and L. Wilson, Giant radiating dyke swarms on Earth and Venus, Earth Sci. Rev., 39, 1–58, 1995.

    Article  Google Scholar 

  • Fagents, S. A., and L. Wilson, Explosive volcanism on Venus: Transient volcanic explosions as a mechanism for localized pyroclast dispersal, J. Geophys. Res., 100, 26327–26338, 1995.

    Article  Google Scholar 

  • Fink, J. H., and R. W Griffiths, A laboratory analog study of the surface morphology of lava flows extruded from point and line sources, J. Volcanol Geotherm. Res., 54, 19–32, 1992.

    Article  Google Scholar 

  • Ford, P. G., and G. H. Pettengill, Venus topography and kilometer-scale slopes, J. Geophys. Res., 97, 13103–13114, 1992.

    Article  Google Scholar 

  • Fornari, D. J., and R. W. Embley, Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: An overview based on near-bottom and submersible studies, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophys. Monogr, 91, 1–46, American Geophysical Union, Washington, DC, 1995.

    Google Scholar 

  • Fornari, D. J., R. M. Haymon, M. R. Perfit, T. K. P. Gregg and M. H. Edwards, 1998, Axial summit trough of the East Pacific Rise (9°N to 10°N): Geological characteristics and evolution of the axial zone on fast-spreading mid-ocean ridges, J. Geophys. Res., 103:9827–9855.

    Article  Google Scholar 

  • Fornari, D. J., R. Batiza, and M. A. Luckman, Seamount abundances and distribution near the East Pacific Rise 0°-24°N based on SeaBeam data, in Seamounts, Islands, and Atolls, Geophys. Monogr., 43, 13–21, American Geophysical Union, Washington, DC, 1987.

    Google Scholar 

  • Garvin, J. B., and R. S. Williams, Small domes on Venus: Probable analogs of Icelandic lava shields, Geophys. Res. Lett., 17, 1381–1384, 1990.

    Article  Google Scholar 

  • Glazner, A. F., and D. M. Miller, Late-stage sinking of plutons, Geology, 25, 1099–1102, 1997.

    Article  Google Scholar 

  • Glazner, A. E., and W. Ussier, Trapping of magma at midcrustal density discontinuities, Geophys. Res. Lett., 15, 673–675, 1988.

    Article  Google Scholar 

  • Goldstein, R. M., R. R. Green, and H. C. Rumsey, Venus radar brightness and altitude images, Icarus, 36, 334–352, 1978.

    Article  Google Scholar 

  • Gregg, T. K. P., and J. H. Fink, Quantification of submarine lava-flow morphology through analog experiments, Geology, 23, 73–76, 1995.

    Article  Google Scholar 

  • Gregg, T. K. P. and J. H. Fink, Quantification of extraterrestrial lava flow effusion rates through laboratory simulations, J. Geophys. Res., 101 (E7), 16891–16900, 1996.

    Article  Google Scholar 

  • Gregg, T. K. P., and D. J. Fornari, Long submarine lava flows: Observations and results from numerical modeling, J. Geophys. Res., 103, 27517–27532, 1998.

    Article  Google Scholar 

  • Gregg, T. K. P., and R. Greeley, Formation of Venus canali: Considerations of lava types and their thermal behaviors, J. Geophys. Res., 98 (E6), 10873–10882, 1993.

    Article  Google Scholar 

  • Gregg, T. K. P., and S. E. H. Sakimoto, Venusian lava flow morphologies: Variations on a basaltic theme, Lunar Planet. Sci., XXVII, 459–460, 1996.

    Google Scholar 

  • Gregg, T. K. P., D. J. Fornari, M. R. Perfit. R. M. Haymon, and J. H. Fink, Rapid emplacement of a mid-ocean ridge lava flow on the East Pacific Rise at 946′-52′N, Earth Planet. Sci. Lett., 144, E1–E7, 1996.

    Article  Google Scholar 

  • Griffiths, R. W., and J. H. Fink, The morphology of lava flows in planetary environments: Predictions from analog experiments, J. Geophys. Res., 97 (B13), 19739–19748, 1992.

    Article  Google Scholar 

  • Grimm, R. E., and P. C. Hess, The crust of Venus, in Venus II, edited by Bougher et al., pp. 1205–1244, University of Arizona Press, Tucson, 1997.

    Google Scholar 

  • Grosfils, E. B., and J. W. Head, The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state, Geophys. Res. Lett., 21, 701–704, 1994.

    Article  Google Scholar 

  • Grosfils, E. B., and J. W. Head, Radiating dike swarms on Venus: Evidence for emplacement at zones of neutral buoyancy, Planet. Space Sci., 43, 1555–1560, 1995.

    Article  Google Scholar 

  • Guest, J. E., K. Beratan, G. Michaels, K. Desmaris, and C. Weitz, Slope failure on the margins of volcanic domes on Venus: EOS Trans. Am. Geophys. Union, 72, 278–279, 1991.

    Article  Google Scholar 

  • Guest, J. E., et al., Small volcanic edifices and volcanism in the plains of Venus, J. Geophys. Res., 97, 15949–15966, 1992.

    Article  Google Scholar 

  • Hansen, V. L., J. J. Willis, and W. B. Banerdt, Tectonic overview and synthesis, in Venus II, edited by Bougher et al., pp. 797–845, University of Arizona Press, Tucson, 1997.

    Google Scholar 

  • Haymon, R. M., D. J. Fornari, K. L. Von Damm, M. D. Lilley, J. M. Edmond, W. C. Shanks, III, R. A. Lutz, J. M. Grebmeier, S. Carbotte, D. Wright, E. McLaughlin, M. Smith, N. Beedle and E. Olson, Volcanic eruption of the mid-ocean ridge along the East Pacific Rise at 9°45-52′N: I. Direct submersible observation of seafloor phenomena associated with an eruption event in April, 1991, Earth Planet. Sci. Lett., 119, 85–101, 1993.

    Article  Google Scholar 

  • Head, J. W., and L. Wilson, Volcanic processes and landforms on Venus: Theory, predictions, and observations, J. Geophys. Res., 91, 9407–9446, 1986.

    Article  Google Scholar 

  • Head, J. W., and L. Wilson, Magma reservoirs and neutral buoyancy zones on Venus: Implications for the formation and evolution of volcanic landforms, J. Geophys. Res., 97, 3877–3903, 1992.

    Article  Google Scholar 

  • Head, J. W., D. B. Campbell, C. Elachi, J. E. Guest, D. P. McKenzie, R. S. Saunders, G. G. Schaber, and G. Schubert, Venus volcanism: Initial analysis from Magellan data, Science, 252, 276–288, 1991.

    Article  Google Scholar 

  • Head, J. W., L. S. Crumpler, J. C. Aubele, J. E. Guest, and R. S. Saunders, Venus volcanism: Classification of volcanic features and structures, associations, and global distributions from Magellan data, J. Geophys. Res., 97, 13153–13198, 1992.

    Article  Google Scholar 

  • Holliger, K., and A. Levander, Lower crustal reflectivity modeled by rheological controls on mafic intrusions, Geology, 22, 367–370, 1994.

    Article  Google Scholar 

  • Hooft, E. E., and R. S. Detrick, The role of density in the accumulation of basaltic melts at mid-ocean ridges, Geophys. Res. Lett., 20, 423–426, 1993.

    Article  Google Scholar 

  • Jaroslow, G. E., D. K. Smith, and B. E. Tucholke, Record of seamount production and off-axis evolution in the western North Atlantic Ocean 25 degrees 25′-27 degrees 10′N, submitted to J. Geophys. Res., 2000, in press.

    Google Scholar 

  • Keddie, S. T., and J. W. Head, Height and altitude distribution of large volcanoes on Venus, Planet. Space Sci., 42, 455–462, 1994.

    Article  Google Scholar 

  • Keszthelyi, L., A preliminary thermal budget for lava tubes on the Earth and planets, J. Geophys. Res., 100 (BIO), 20411–20420, 1995a.

    Article  Google Scholar 

  • Keszthelyi, L., Thermal constraints on the lengths of tube-fed lava flows on the Earth, Moon, Mars and Venus, Lunar Planet. Sci., XXVI, 739–740, 1995b.

    Google Scholar 

  • Kleinrock, M. C., Capabilities of some systems used to survey the deep-sea floor, in CRC Handbook of Geophysical Exploration at Sea, 2nd Edition, Hard Minerals, edited by R. A. Geyer, pp. 35–86, CRC Press, Boca Raton, FL, 1992.

    Google Scholar 

  • Komatsu, G., V. R. Baker, V. Gulick, and T. J. Parker, Venusian channels and valleys: Distribution and volcanological implications, Icarus, 102, 1–25, 1993.

    Article  Google Scholar 

  • Lide, D. R., CRC Handbook of Chemistry and Physics, 71st ed., CRC Press, Boca Raton, FL, 1990.

    Google Scholar 

  • Mackwell, S. J., M. E. Zimmerman, and D. L. Kohlstedt, High-temperature deformation of dry diabase with application to tectonics of Venus, J. Geophys. Res., 103, 975–984, 1998.

    Article  Google Scholar 

  • Magde, L. S., and D. K. Smith, Seamount volcanism at the Reykjanes Ridge: Relationship to the Iceland hot spot, J. Geophys. Res., 100, 8449–8468, 1995.

    Article  Google Scholar 

  • Marsh, B. D., On the interpretation of crystal size distributions in magmatic systems, J. Petrol. 39, 553–599, 1998.

    Article  Google Scholar 

  • McGill, G. E., J. F. Warner, M. C. Malin, R. E. Arvidson, E. Eliason, S. Nozette, and R. D. Reasenberg, Topography, surface properties, and tectonic evolution, in Venus, edited by D. M. Hunten et al., pp. 69–130, University of Arizona Press, Tucson, 1983.

    Google Scholar 

  • McKenzie, D., P. G. Ford, F. Liu, and G. H Pettengill, Pancake-like domes on Venus, J. Geophys. Res., 97, 15967–15976, 1992a.

    Article  Google Scholar 

  • McKenzie, D., J. M. McKenzie, and R. S. Saunders, Dike emplacement on Venus and on Earth, J. Geophys. Res., 97, 15977–15990, 1992b.

    Article  Google Scholar 

  • McNutt, M. K., and K. M. Fischer, The South Pacific Superswell, in Seamounts, Islands and Atolls, Geophys. Monogr, 43, 25–34, American Geophysical Union, Washington, DC, 1987.

    Google Scholar 

  • Moore, H. J., J. J. Plaut, P. M. Schenk, and J. W. Head, An unusual volcano on Venus, J. Geophys. Res., 97, 13479–13494, 1992.

    Article  Google Scholar 

  • Parfitt, E. A., L. Wilson, and J. W. Head, Basaltic magma reservoirs: Factors controlling their rupture characteristics and evolution, J. Volcanol. Geotherm. Res., 55, 1–14, 1993.

    Article  Google Scholar 

  • Pettengill, G. H., E. Eliason, P. G. Ford, G. B. Loriot, H. Masursky, and G. E. McGill, Pioneer Venus radar results: altimetry and surface properties, J. Geophys. Res., 85, 8261–8270, 1980.

    Article  Google Scholar 

  • Perfit, M. R., D. J. Fornari, M. C. Smith, J. F Bender, C. H. Langmuir, and R. M. Haymon, Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes, Geology, 22, 375–379, 1994.

    Article  Google Scholar 

  • Phipps Morgan, J., and Y. J. Chen, The genesis of ocean crust: Magma injection, hydrothermal circulation, and crustal flow, J. Geophys. Res., 98, 6283–6297, 1993.

    Article  Google Scholar 

  • Purdy, G. M., L. S. L. Kong, G. L. Christenson, and S. C. Solomon, Relationship between spreading rate and the seismic structure of mid-ocean ridges, Nature, 355, 815–817, 1992.

    Article  Google Scholar 

  • Reidel, S. P., Emplacement of Columbia River Flood Basalt, J. Geophys. Res., 103 (B11), 27393–27410, 1998.

    Article  Google Scholar 

  • Ristau, S., J. Sammons, E. Grosfils, L. Reinen, M. Gilmore, and S. Kozak, Distribution of intermediate volcanoes on Venus as a function of altitude, Abstract #1100 (CD-ROM), Lunar Planet. Sci., Conf., XXIX, 1998.

    Google Scholar 

  • Roberts, K. M., J. E. Guest, J. W. Head, and M. G. Lancaster, Mylitta Fluctus, Venus: Rift-related, centralized volcanism and the emplacement of large-volume flow units, J. Geophys. Res., 97 (E10), 15991–16015, 1992.

    Article  Google Scholar 

  • Rowland, S. K., and G. P. L. Walker, Pahoehoe and aa in Hawaii: Volumetric flow rate controls the lava structure, Bull. Volcanol., 52, 615–628, 1990.

    Article  Google Scholar 

  • Rubin, A. M., A comparison of rift-zone tectonics in Iceland and Hawaii, Bull. Volcanol., 52, 302–319, 1990.

    Article  Google Scholar 

  • Rubin, A. M., and D. D. Pollard, Origins of blade-like dikes in volcanic rift zones, U.S. Geol. Surv. Prof. Pap., 1350, 1449–1470, 1987.

    Google Scholar 

  • Ryan, M. P., Neutral buoyancy and the mechanical evolution of magmatic systems, in Magmatic Processes: Physiochemical Principles, edited by B. O. Myser, Geochemical Society Special Publication No. 1, pp. 259–287, University Park, PA, 1987.

    Google Scholar 

  • Ryan, M. P., Neutral buoyancy and the structure of mid-ocean ridge magma reservoirs, J. Geophys. Res., 98, 22321–22338, 1993.

    Article  Google Scholar 

  • Ryan, M. P., Neutral-buoyancy controlled magma transport and storage in mid-ocean ridge magma reservoirs and their sheeted dike complex: A summary of basic relationships, in Magmatic Systems, edited by M. P. Ryan, pp. 97–138, Academic Press, San Diego, 1994.

    Google Scholar 

  • Ryan, M. P., and C. G. Sammis, The glass transition in basalt, J. Geophys. Res., 86, 9519–9535, 1981.

    Article  Google Scholar 

  • Sakimoto, S. E. H., Terrestrial basaltic counterparts for the Venus steep-sided or pancake domes, Lunar Planet. Sci., XXV, 1189–1190, 1994.

    Google Scholar 

  • Sakimoto, S. E. H., and S. M. Baloga, Thermal controls on tube-fed planetary lava flow lengths, Lunar Planet. Sci., XXVI, 1217–1218, 1995.

    Google Scholar 

  • Sakimoto, S. E. H., and M. T. Zuber, Flow and convective cooling in lava tubes, J. Geophys. Res., 103, 27465–27487, 1998.

    Article  Google Scholar 

  • Sakimoto, S. E. H., J. Crisp, and S. M. Baloga, Eruption constraints on tube-fed planetary lava flows, J. Geophys. Res., 102 (E3), 6597–6613, 1997.

    Article  Google Scholar 

  • Schaber, G. G., Volcanism on Venus as inferred from the morphometry of large shields, Proc. Lunar Planet. Sci. Conf., XXI, 3-11, 1991.

    Google Scholar 

  • Scheirer, D. S., and K. C. Macdonald, Near-axis seamounts on the flanks of the East Pacific Rise, 8°N to 17°N, J. Geophys. Res., 100, 2239–2259, 1995.

    Article  Google Scholar 

  • Searle, R. C., Submarine central volcanoes on the Nazca plate—high-resolution sonar observations, Mar. Geol, 53, 77–102, 1983.

    Article  Google Scholar 

  • Seiff, A., Thermal structure of the atmosphere of Venus, in Venus, edited by D. M. Hunten et al., 215–279, University of Arizona Press, Tucson, 1983.

    Google Scholar 

  • Self, S., Th. Thordarson, L. P. Keszthelyi, G. P. L. Walker, K. Hon, M. T. Murphy, P. Long, and S. Finnemore, A new model for the emplacement of Colombia River basalts as large, inflated pahoehoe lava flow fields, Geophys. Res. Lett., 23, 2689–2692, 1996.

    Article  Google Scholar 

  • Senske, D. A., D. B. Campbell, J. W. Head, P. C. Fisher, A. A. Hine, A. deCharon, S. L. Frank, S. T. Keddie, K. M. Roberts, E. R. Stofan, J. C. Aubele, L. S. Crumpler, and N. Stacy, Geology and tectonics of the Themis Regio-Lavinia Planitia-Alpha Regio-Lada Terra Area, Venus: Results from Arecibo image data, Earth Moon Planets, 55, 97–161, 1991.

    Article  Google Scholar 

  • Simkin, T, and R. Batiza, Flattish summits, calderas and circumferential vents: A morphogenetic comparison of young EPR seamounts and Galapagos volcanoes, EOS, 65, 1080, 1984.

    Google Scholar 

  • Sinton, J. M., and R. S. Detrick, Mid-ocean ridge magma chambers, J. Geophys. Res., 97, 197–216, 1992.

    Article  Google Scholar 

  • Smith, D. K., Shape analysis of Pacific seamounts, Earth Planet. Sci. Lett., 90, 457–466, 1988.

    Article  Google Scholar 

  • Smith, D. K., Comparison of the shapes and sizes of seafloor volcanoes on Earth and “pancake” domes on Venus, J. Volcanol. Geotherm. Res., 73, 47–64, 1996.

    Article  Google Scholar 

  • Smith, D. K., and J. R. Cann, The role of seamount volcanism in crustal construction at the Mid-Atlantic Ridge (24°-30°N), J. Geophys. Res., 97, 1645–1658, 1992.

    Article  Google Scholar 

  • Smith, D. K., and J. R. Cann, Building the crust at the Mid-Atlantic Ridge, Nature, 365, 707–715, 1993.

    Article  Google Scholar 

  • Smith, D. K., and J. R. Cann, Constructing the upper crust of the Mid-Atlantic Ridge: A reinterpretation based on the Puna Ridge, Kilauea Volcano, J. Geophys. Res., 104, 25379–25400, 1999.

    Article  Google Scholar 

  • Smith, D. K., and T. H. Jordan, Seamount statistics in the Pacific Ocean, J. Geophys. Res., 93, 2899–2918, 1988.

    Article  Google Scholar 

  • Smith, D. K., S. E. Humphris, and W. B. Bryan. A comparison of volcanic edifices at the Reykjanes Ridge and the Mid-Atlantic Ridge at 24-30 N, J. Geophys. Res., 100. 22485–22498, 1995.

    Article  Google Scholar 

  • Smith, T. L., and R. Batiza, New field and laboratory evidence for the origin of hyaloclastite flows on seamount summits, Bull. Volcanol., 51, 96–114, 1989.

    Article  Google Scholar 

  • Smrekar, S. E., and S. C. Solomon, Gravitational spreading of high terrain in Ishtar Terra, Venus, J. Geophys. Res., 97, 16121–16148, 1992.

    Article  Google Scholar 

  • Smrekar, S., W. S. Kieffer, and E. R. Stofan, Large volcanic rises on Venus, in Venus II. edited by Bougher et al., pp. 845–878, University of Arizona Press, Tucson. 1997.

    Google Scholar 

  • Solomon, S. C., S. E. Smrekar, D. L. Bindschadler. R. E. Grimm. W. M. Kaula, G. E. McGill, R. J. Phillips, R. S. Saunders, G. Schubert, S. W. Squyres and E. R. Stofan. Venus tectonics: An overview of Magellan observations, J. Geophys Res., 97, 13199–13255, 1992.

    Article  Google Scholar 

  • Stephenson, P. J., and T. J. Griffin, Some long basaltic lava flows in North Queensland, in Volcanism in Australasia, edited by R. W. Johnson, pp. 41–51, Elsevier, Amsterdam. 1976.

    Google Scholar 

  • Stofan, E. R., V. E. Hamilton, D. M. Janes, and S. E. Smrekar. Coronae on Venus: Morphology and origin, in Venus II, edited by Bougher et al., pp. 931–965. University of Arizona Press. Tucson, 1997.

    Google Scholar 

  • Tormey, D. R., T. L. Grove, and W. B. Bryan, Experimental petrology of normal MORB near the Kane fracture zone: 22°-25° N, Mid-Atlantic Ridge, Contrib. Mineral. Petrol, 96, 121–139, 1987.

    Article  Google Scholar 

  • Turner, J. S., and I. H. Campbell, Convection and mixing in magma chambers. Earth Sci. Rev., 23, 255–352, 1986.

    Article  Google Scholar 

  • von Zahn, U., S. Kumar, H. Niemann, and R. Prinn. Composition of the atmosphere of Venus: in Venus, edited by D. M. Hunten et al., pp. 299–430, University of Arizona Press, Tucson. 1983.

    Google Scholar 

  • Walker, G. P. L., Lengths of lava flows. Philos. Trans. R. Soc. London Set: A, 274, 107–118. 1973.

    Article  Google Scholar 

  • Walker, G. P. L., Gravitational (density) controls on volcanism. magma chambers and intrusions, Aust. J. Earth Sci., 36, 149–165, 1989.

    Article  Google Scholar 

  • Watters, T. R., and D. M. Janes, Coronae on Venus and Mars: Implications for similar structures on Earth, Geology, 23, 200–204, 1995.

    Article  Google Scholar 

  • Weertman, J., Height of mountains on Venus and the creep properties of rock, Phys. Earth Planet. Inter., 19, 197–207, 1979.

    Article  Google Scholar 

  • Wenrich, M. L., and R. Greeley, Investigation of Venusian pyroclastic volcanism, Lunar Planet. Sci., XXIII, 1515–1516, 1992.

    Google Scholar 

  • Wilson, L., J. W. Head, and E. A. Parfitt, The relationship between the height of a volcano and the depth to its magma source zone: A critical reexamination, Geophys. Res. Lett., 19, 1395–1398, 1992.

    Article  Google Scholar 

  • Wojcik, K. M., and R. W. Knapp, Stratigraphie control of the Hills Pond lamproite. Silver City Dome, southeastern Kansas, Geology, 18, 251–254, 1990.

    Article  Google Scholar 

  • Wood, J. A., Rock weathering on the surface of Venus, in Venus II. edited by Bougher et al., pp. 637–664, University of Arizona Press, Tucson, 1997.

    Google Scholar 

  • Zimbelman, J. R., Emplacement of long lava flows on planetary surfaces, J. Geophys. Res., 103 (B11), 27503–27516, 1998.

    Article  Google Scholar 

  • Zuber, M. T., Constraints on the lithospheric structure of Venus with mechanical models and tectonic surface features, J. Geophys. Res., 92, 541–551. 1987.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grosfils, E.B., Aubele, J., Crumpler, L., Gregg, T.K.P., Sakimoto, S. (2000). Volcanism on Earth’s Seafloor and Venus. In: Zimbelman, J.R., Gregg, T.K.P. (eds) Environmental Effects on Volcanic Eruptions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4151-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4151-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6862-5

  • Online ISBN: 978-1-4615-4151-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics