Skip to main content

Colonic Cell Proliferation and Apoptosis in Rodent Species

Modulation by Diet

  • Chapter
Colon Cancer Prevention

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 470))

Abstract

Apoptosis is a form of programmed cell death shown to play a central role in normal colonic development.1,2 During apoptosis, the nucleus and cytoplasm condense and the dying cell fragments form membrane bound apoptotic bodies which are subsequently digested by phagocytic cells.3 In contrast to necrosis, this process avoids the release of noxious cellular contents, preventing the induction of an inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Podolsky, D.K. Regulation of intestinal epithelial proliferation: a few answers, many questions. Am. J. Physiol. 264:G179–G186, 1993.

    PubMed  CAS  Google Scholar 

  2. Pötten, C.S., Li, Y.Q., O’Connor, P.J., and Winton, D.J. A possible explanation for the differential cancer incidence in the intestine, based on distribution of the cytotoxic effects of carcinogens in the murine large bowel. Carcinogenesis 13:2305–2312, 1992.

    Article  PubMed  Google Scholar 

  3. Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Sato, M. and Ahnen, D.J. Regional variability of colonocyte growth and differentiation in the rat. Anatom. Record 233:409–414, 1992.

    Article  CAS  Google Scholar 

  5. Martin, K., Kirkwood, T.B.L., and Potten, C.S. Age changes in stem cells of murine small intestinal crypts. Exp. Cell Res. 241:316–323, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Holt, PR. and Yeh, K.Y. Colonic proliferation is increased in senescent rats. Gastroenterol 95:1556–1563, 1988.

    CAS  Google Scholar 

  7. Holt, P.R., Moss, S.F., Heydari, A.R., and Richardson, A. Diet restriction increases apoptosis in the gut of aging rats. J. Gerontol. 53A:B168–B172, 1998.

    Article  Google Scholar 

  8. Siniscope, F.A., Ruan, S.B., Cleary, K.R., Stephens, L.C., Lee, J.J., and Levin, B. bcl-2 and p53 onco-protein expression during colorectal tumorigenesis. Cancer Res. 55:237–241, 1995.

    Google Scholar 

  9. Bedi, A., Pasricha, P.J., Alchtar, A.J., Barber, J.P, Bedi, G.C., Giairdiello, F.M., Zehnbauer, B.A., Hamilton, S.R., and Jones, R.J. Inhibition of apoptosis during development of colorectal cancer. Cancer Res. 55:1811–1816, 1995.

    PubMed  CAS  Google Scholar 

  10. Hayashi, R., Luk., H., Horio, D., and Dashwood, R. Inhibition of apoptosis in colon tumors induced by 2-amino-3-methylimidazo[4,5-f]quinoline. Cancer Res. 56:4307–4310, 1996.

    PubMed  CAS  Google Scholar 

  11. Preston-Martin, S., Pike, M.C., Ross, R.K., Jones, P.A., and Henderson, B.E. Increased cell division as a cause of human cancer. Cancer Res. 50:7415–7422, 1990.

    PubMed  CAS  Google Scholar 

  12. Farber, E. Cell proliferation as a major risk factor for cancer: a concept of doubtful validity. Cancer Res. 55:3759–3762, 1995.

    PubMed  CAS  Google Scholar 

  13. Chang, W.C.L., Chapkin, R.S., and Lupton, J.R. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis 18:721–730, 1997.

    Article  PubMed  CAS  Google Scholar 

  14. Merritt, A J., Potten, C.S., Kemp, C.J., Hickman, J.A., Balmain, A., Lane, D.P., and Hall, P.A. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54:614–617, 1994.

    PubMed  CAS  Google Scholar 

  15. Arai, T, Kida, Y., Harmon, B.V., and Gobe, G.C. Comparative alterations in p53 expression and apoptosis in the irradiated small and large intestine. Br. J. Cancer 74:406–412, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. Potten, C.S., Wilson, J.W., and Booth, W.C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal tract. Stem Cells 15:82–93, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Ahnen, D.J. Are animal models of colon cancer relevant to human diseases? Dig. Dis. Sci. 30:103S–106S, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Chapkin, R.S., Jiang, Y.H., Davidson, L.A., and Lupton, J.R. Modulation of intracellular second messengers by dietary fat during colonic tumor development. Adv. Exp. Med. Biol. 422:85–96, 1997.

    PubMed  CAS  Google Scholar 

  19. Kakiuchi, H., Watanabe, M., Ushijima, T., Toyota, M., Imai, K., Weisburger, J.H., Sugimura, T., and Nagao, M. Specific 5′-GGGA-3′ → 5′-GGA-3′ mutation of the Apc gene in rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Proc. Natl. Acad. Sci. USA 92:910–914, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Maltzman, T., Whittington, J., Driggers, L., Stephens, J., and Ahnen, D. AOM-induced mouse colon tumors do not express full-length APC protein. Carcinogenesis 18:2435–2439, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Reddy, B.S., Burill, C., and Rigotty, J. Effect of diets high in G3-3 and G3-6 fatty acids on initiation and postinitiation stages of colon carcinogenesis. Cancer Res. 51:487–491, 1991.

    PubMed  CAS  Google Scholar 

  22. Dubois, R.N., Radhika, A., Reddy, B.S., and Entingh, A.J. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterol. 110:1259–1262, 1996.

    Article  CAS  Google Scholar 

  23. Hirose, Y., Yoshimi, N., Suzui, M., Kawabata, K., Tanaka, T., and Mori, H. Expression of bcl-2, bax, and bcl-XL proteins in axoxymethane-induced rat colonic adenocarcinomas. Molec. Carcinogenesis 19:25–30, 1997.

    Article  CAS  Google Scholar 

  24. Takahashi, M., Fukuda, K., Sugimura, T, and Wakabayashi, K. β-Catenin is frequently mutated and demonstrates altered cellular location in azoxymethane-induced rat colon tumors. Cancer Res. 58:42–46, 1998.

    PubMed  CAS  Google Scholar 

  25. Cory, S. and Actams, J.M. Matters of life and death: programmed cell death at Cold Spring Harbor. Biochim. Biophys. Acta 1377:R25–R44, 1998.

    PubMed  CAS  Google Scholar 

  26. Chandrasekaran, C., Coopersmith, C.M., and Gordon, J.I. Use of normal and transgenic mice to examine the relationship between terminal differentiation of intestinal epithelial cells and accumulation of their cell cycle regulators. J. Biol. Chem. 271:28414–28421, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Rosenberg, M.P. Gene knockout and transgenic technologies in risk assessment: The next generation. Molec. Carcinogenesis 20:262–274, 1997.

    Article  CAS  Google Scholar 

  28. Zhang, T., Nanney, L.B., Luongo, C., Lamps, L., Heppner, K.J., DuBois, R.N., and Beauchamp, R.D. Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res. 57:169–175, 1997.

    PubMed  CAS  Google Scholar 

  29. Harrington, E.A., Fanidi, A., and Evan, G.I. Oncogenes and cell death. Curr. Opin. Genet. Devel. 4:120–129, 1994.

    Article  CAS  Google Scholar 

  30. Gervais, J.L., Seth, P., and Zhang, H. Cleavage of CDK inhibitor p21Cip/Waf1 by caspases is an early event during DNA damage-induced apoptosis. J. Biol. Chem. 273:19207–19212, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Picksley, S.M. and Lane, D.P. p53 and Rb: their cellular roles. Curr. Opin. Cell Biol. 6:853–858, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. El-Deiry, W.S., Tokino, T., Waldman, T., Oliner, J.D., Velculescu, V.E., Burrell, M., Hill, D.E., Healy, E., Rees, J.L., Hamilton, S.R., Kinzler, K.W., and Vogelstein, B. Topological control of p21WAF/CIP1 expression in normal and neoplastic tissues. Cancer Res. 55:2910–2919, 1995.

    PubMed  CAS  Google Scholar 

  33. Peter, M. and Herskowitz, I. Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79:181–184, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Rodrigeues, N.R., Rowan, A., Smith, M.E.F., Kerr, I.B., Bodmer, W.F., Gannon, J.V., and Lane, D.P. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA 87:7555–7559, 1990.

    Article  Google Scholar 

  35. Starzynska, T., Bromley, M., Ghosh, A., and Stern, P.L. Prognostic significance of p53 overexpression in gastric and colorectal carcinoma. Br. J. Cancer 66:558–562, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Hague, A., Moorghen, M., Hicks, D., Chapman, M., and Paraskeva, C. BCL-2 expression in human colorectal adenomas and carcinomas. Oncogene 9:3367–3370, 1994.

    PubMed  CAS  Google Scholar 

  37. Hockenberry, D.M., Zutter, M., Hickey, W., Nahm, M., and Korsmeyer, S.J. BCL-2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. Natl. Acad. Sci. USA 88:6961–6965, 1991.

    Article  Google Scholar 

  38. Merritt, A.J., Potten, C.S., Watson, A.J.M., Loh, D.Y., Nakayama, K., Nakayama, K., and Hickman, J.A. Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J. Cell Sci. 108:2261–2271, 1995.

    PubMed  CAS  Google Scholar 

  39. Krajewski, S., Krajewska, M., Shabaik, A., Miyashita, T., Wang, H.G., and Reed, J.C. Immunohisto-chemical determination of in vivo distribution of bax, a dominant inhibitor of bcl-2. Am. J. Pathol. 145:1323–1336, 1994.

    PubMed  CAS  Google Scholar 

  40. Hass, R., Busche, R., Luciano, L., Reale, E., and Englehardt, W.V. Lack of butyrate is associated with induction of bax and subsequent apoptosis in the proximal colon of guinea pig. Gastroenterol. 112:875–881, 1997.

    Article  CAS  Google Scholar 

  41. Lee, J. M. and Bernstein, A. Apoptosis, cancer, and the p53 tumor suppressor gene. Cancer Metast. Rev. 14:149–161, 1995.

    Article  CAS  Google Scholar 

  42. Hall, P.A., Coates, P.J., Ansari, B., and Hopwood, D. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J. Cell Sci. 107:3569–3577, 1994.

    PubMed  CAS  Google Scholar 

  43. Hirose, Y., Yoshimi, N, Makita, H., Hara, A., Tanaka, T., and Mori, H. Early alterations of apoptosis and cell proliferation in azoxymethane-initiated rat colonic epithelium. Jpn. J. Cancer Res. 87:575–582, 1996.

    Article  PubMed  CAS  Google Scholar 

  44. Beere, H.M. and Hickman, J.A. Differentiation: a suitable strategy for cancer chemotherapy? Anti-Cancer Drug Design 8:299–322, 1993.

    PubMed  CAS  Google Scholar 

  45. Clarke, A.R., Gledhill, S., Hooper, M.L., Bird, C.C., and Wyllie, A.H. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following γ-irradiation. Oncogene 9:1767–1773, 1994.

    PubMed  CAS  Google Scholar 

  46. Cardone, M.H., Salvesen, G.S., Widmann, C., Johnson, C., and Frisch, S.M. The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90:315–323, 1997.

    Article  PubMed  CAS  Google Scholar 

  47. Hermiston, M.L., Wong, M.H., and Gordon, J.I. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Development 10:985–996, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Hermiston, M.L. and Gordon, J.I. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270:1203–1207, 1995.

    Article  PubMed  CAS  Google Scholar 

  49. Wong, M.H., Hermiston, M.L., Syder, A.J., and Gordon, J.I. Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proc. Natl. Acad. Sci. USA 93:9588–9593, 1996.

    Article  PubMed  CAS  Google Scholar 

  50. Morin, P.J., Sparks, A.B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and Kinzler, K.W. Activation of β-catenin-Tcf signaling in colon caner by mutations in β-catenin or Apc. Science 275:1787–1790, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. Mahmoud, N.N., Boolbol, S.K., Bilinski, R.T., Martucci, C., Chadburn, A., and Bertagnolli, M.M. Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Res. 57:5045–5050, 1997.

    PubMed  CAS  Google Scholar 

  52. Peifer, M. β-catenin as oncogene: the smoking gun. Science 275:1752–1753, 1997.

    Article  PubMed  CAS  Google Scholar 

  53. Reddy, B.S., Rao, C.V., Rivenson, A., and Kelloff, G. Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in F334 rats. Carcinogenesis 14:1493–1497, 1993.

    Article  PubMed  CAS  Google Scholar 

  54. Barnes, C.J., Lee, M., Hardmann, W.E., and Cameron, I.L. Aspirin, age, and proximity to lymphoid nodules influence cell proliferation parameters in rat colonic crypts. Cell Prolif. 28:59–71, 1995.

    Article  PubMed  CAS  Google Scholar 

  55. Samaha, H.S., Kelloff, G.J., Steele, V., Rao, C.V., and Reddy, B.S. Modulation of apoptosis by sulinda, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: apoptotic index as a bio-marker in colon cancer chemoprevention and promotion. Cancer Res. 57:1301–1305, 1997.

    PubMed  CAS  Google Scholar 

  56. Oshima, M., Dinchuk, J.E., Kargman, S.L., Ohsima, H., Hancock, B., Kwong, E., Trzaskos, J.M., Evans, J.F., and Taketo, M.M. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–809, 1996.

    Article  PubMed  CAS  Google Scholar 

  57. Tsujii, M. and DuBois, R.N. Alterations in cellular adhesion and apoptosis in epithelial cells over-expresing prostaglandin endoperoxide synthase 2. Cell 83:493–501, 1995.

    Article  PubMed  CAS  Google Scholar 

  58. Cohn, S.M., Schloemann, S., Tessner, T., Seibert, K., and Stenson, W.F. Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. J. Clin. Invest. 99:1367–1379, 1997.

    Article  PubMed  CAS  Google Scholar 

  59. Chan, T.A., Morin, P.J., Vogelstein, B., and Kinzler, K.W. Mechanisms underlying nonsteroidal anti-inflammatory drug-mediated apoptosis. Proc. Natl. Acad. Sci. USA 95:681–686, 1998.

    Article  PubMed  CAS  Google Scholar 

  60. Jiang, Y.H., Lupton, J.R., Jolly, C.A., Davidson, L.A., Aukema, H.M., and Chapkin, R.S. Dietary fat and fiber differentially regulate intracellular second messengers during tumor development in rat colon. Carcinogenesis 17:1227–1233, 1996.

    Article  PubMed  CAS  Google Scholar 

  61. Chang, W.C.L., Chapkin, R.S., and Lupton, J.R. Fish oil blocks azoxymethane-induced tumorigenesis by increased cell differentiation, and apoptosis rather than decreased cell proliferation. J. Nutr. 128:491–497, 1998.

    PubMed  CAS  Google Scholar 

  62. Kim, D.Y., Chung, K.H., and Lee, J.H. Stimulatory effects of high-fat diets on colon cell proliferation depend on the type of dietary fat and site of the colon. Nutr. Cancer 30:118–123, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Hong, M.Y., Chang, W.C., Chapkin, R.S., and Lupton, J.R. Relationship among colonocyte proliferation, differentiation, and apoptosis as a function of diet and carcinogen. Nutr. Cancer 28:20–29, 1997.

    Article  PubMed  CAS  Google Scholar 

  64. Zoran, D.L., Turner, N.D., Taddeo, S.S., Chapkin, R.S., and Lupton, J.R. Wheat bran reduces tumor incidence in a rat model of colon cancer independent of effects on distal luminal butyrate concentrations. J. Nutr. 127:2217–2225, 1997.

    PubMed  CAS  Google Scholar 

  65. Reddy, B.S. Chemoprevention of colon cancer by dietary fatty acids. Cancer Metastasis Rev. 13:285–302, 1994.

    Article  PubMed  CAS  Google Scholar 

  66. Takahashi, M., Fukutake, M., Isoi, T., Fukada, K., Sato, H., Yazawa, K., Sugimura, T., and Wakabayashi, K. Suppression of azoxymethane-induced rat colon carcinoma development by a fish oil component, docosahexaenoic acid (DHA). Carcinogenesis 18:1337–1342, 1997.

    Article  PubMed  CAS  Google Scholar 

  67. Singh, B., Halestrap, P., and Paraskeva, C. Butyrate can act as a stimulator of growth or inducer of apoptosis in human colonic cell lines depending on the presence of alternative energy sources. Carcinogenesis 18:1265–1270, 1997.

    Article  PubMed  CAS  Google Scholar 

  68. Williams, A.C., Hague, A., Elder, D.J.E., and Paraskeva, C. In vitro models for studying colorectal carcinogenesis cellular and molecular events including APC and Rb cleavage in the control of proliferation, differentiation, and apoptosis. Biochim. Biophys. Acta 1288:F9–F19, 1996.

    PubMed  Google Scholar 

  69. Lupton, J.R. Butyrate and colonic cytokinetics: differences between in vitro and in vivo studies. Eur. J. Cancer Prev. 4:373–378, 1995.

    Article  PubMed  CAS  Google Scholar 

  70. Caderni, G., Luceri, C., Lancioni, L., Tessitore, L., and Dolara, P. Slow-release pellets of sodium butyrate increase apoptosis in the colon of rats treated with azoxymethane, without affecting aberrant crypt foci and colonic proliferation. Nutr. Cancer 30:175–181, 1998.

    Article  PubMed  CAS  Google Scholar 

  71. Steinbach, C., Kumar, S.P., Reddy, B.S., Lipkin, M., and Holt, P.R. Effects of caloric restriction and dietary fat on epithelial cell proliferation in rat colon. Cancer Res. 53:2745–2749, 1993.

    PubMed  CAS  Google Scholar 

  72. Deschner, E.E., Lytle, J., Wong, C., Ruperto, J., and Newmark, H.L. The effect of dietary omega-3 fatty acids (fish oil) on azoxymethanol-induced focal areas of dysplasia and colon tumor incidence. Cancer 66:2350–2356, 1990.

    Article  PubMed  CAS  Google Scholar 

  73. Lee, D.Y.K., Chapkin, R.S., and Lupton, J.R. Dietary fat and fiber modulate colonic cell proliferation in an interactive site specific manner. Nutr. Cancer 20:107–118, 1993.

    Article  PubMed  CAS  Google Scholar 

  74. Hong, M.Y., Chapkin, R.S., Turner, N.D., Galindo, C.D., Carroll, R.J., and Lupton, J.R. Fish oil enhances targeted apoptosis of colonocytes within the first 12 hours of carcinogen exposure and results in lower levels of DNA damage compared to corn oil. FASEB J. 12:A656, 1998.

    Google Scholar 

  75. Davidson, L.A., Aymond, C.M., Jiang, Y.H., Turner, N.D., Lupton, J.R., and Chapkin, R.S. Noninvasive detection of fecal protein kinase C βII and ζ messenger RNA: putative biomarkers for colon cancer. Carcinogenesis 19:253–257, 1998.

    Article  PubMed  CAS  Google Scholar 

  76. Jiang, Y.H., Lupton, J.R., and Chapkin, R.S. Dietary fish oil blocks carcinogen-induced down-regulation of colonic protein kinase C isozymes. Carcinogenesis 18:351–357, 1997.

    Article  PubMed  CAS  Google Scholar 

  77. Jiang, Y.H., Aukema, H., Davidson, L.A., Lupton, J.R., and Chapkin, R.S. Localization of protein kinase C isozymes in rat colon. Cell Growth Differ. 6:1381–1386, 1995.

    PubMed  CAS  Google Scholar 

  78. Sauma, S., Yan, Z., Ohno, S., and Friedman, E. Protein kinase C β1 and protein kinase C β2 activate p57 mitogen-activated protein kinase and block differentiation in colon carcinoma cells. Cell Growth Differ. 7:587–594, 1996.

    PubMed  CAS  Google Scholar 

  79. Saxon, M.L., Zhao, X., and Black, J.P. Activation of protein kinase C isozymes is associated with post-mitotic events in intestinal epithelial cells in situ. J. Cell Biol. 126:747–763, 1994.

    Article  PubMed  CAS  Google Scholar 

  80. Yuan, Z., Utsugisawa, T., Ishiko, T., Nakada, S., Huang, Y., Kharbanda, S., Wechselbaum, R., and Kufe, D. Activation of protein kinase C δ by the c-Abl tyrosine kinase in response to ionizing radiation. Oncogene 16:1643–1648, 1998.

    Article  PubMed  CAS  Google Scholar 

  81. Keenan, C. and Kelleher, D. Protein kinase C and the cytoskeleton. Cell Signal. 10:225–232, 1998.

    Article  PubMed  CAS  Google Scholar 

  82. Wali, R.K., Frawley, B.P, Hartmann, S., Roy, H.K., Khare, S., Scaglione-Sewell, B.A., Earnest, D.L., Sitrin, M.D., Brasitus, T.A., and Bissonnette, M. Mechanism of action of chemoprotective ursodeoxycholate in the azoxymethane model of rat colonic carcinogenesis: potential roles of protein kinase C-α,-βII, and-ζ. Cancer Res. 55:5257–5264, 1995.

    PubMed  CAS  Google Scholar 

  83. Ikeda, H., Suzuki, Y., Suzuki, M., Koike, M., Tamura, J., Tong, J., Nomura, M., and Itoh, G. Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut 42:530–537, 1998.

    Article  PubMed  CAS  Google Scholar 

  84. Licato, L.L., Keku, T.O., Wurzelmann, J.I., Murray, S.C., Woosley, J.T., Sandler, R.S., and Brenner, D.A. In vivo activation of mitogen-activated protein kinases in rat intestinal neoplasia. Gastroenterol. 113:1589–1598, 1997.

    Article  CAS  Google Scholar 

  85. Dove, W.E, Clipson, L., Gould, K.A., Luongo, C., Marshall, D.J., Moser, A.R., Newton, M.A., and Jacoby, R.F. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57:812–814, 1997.

    PubMed  CAS  Google Scholar 

  86. Okayasu, I., Ohkusa, T., Kajiura, K., Kanno, J., and Sakamoto, S. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92, 1996.

    Article  PubMed  CAS  Google Scholar 

  87. Oshima, M., Oshima, H., Kitagawa, K., Kobayashi, M., Itakura, C., and Taketo, M. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl. Acad. Sci. USA 92:4482–4486, 1995.

    Article  PubMed  CAS  Google Scholar 

  88. Fazeli, A., Dickinson, S.L., Hermiston, M.L., Tighe, R.V., Steen, R.G., Small, C.G., Stoeckli, E.T. Keino-Masu, K., Masu, M., Rayburn, H., Simons, J., Bronson, R.T., Gordon, J.I., Tessier-Lavigne, M., and Weinberg, R.A. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386:796–804, 1997.

    Article  PubMed  CAS  Google Scholar 

  89. Coopersmith, C.M., Chandrasekaran, C., McNevin, M.S., and Gordon, J.I. Bi-transgenic mice reveal that K-rasVal12 augments a p53-independent apoptosis when small intestinal villus enterocytes reenter the cell cycle. J. Cell Biol. 138:167–179, 1997.

    Article  PubMed  CAS  Google Scholar 

  90. Reitmair, A.H., Cai, J., Bjerknes, M., Redston, M., Cheng, H., Pind, M., Hay, K., Mitri, A., Bapat, B., Mak T., and Gallinger, S. MSH2 deficiency contributes to accelerated APC-mediated intestinal tumori-genesis. Cancer Res. 56:2922–2926, 1996.

    PubMed  CAS  Google Scholar 

  91. De Wind, N., Dekker, M., van Rossum, A., van der Valk, M., and te Riele, H. Mouse models for hereditary nonpolyposis colorectal cancer. Cancer Res. 58:248–255, 1998.

    PubMed  Google Scholar 

  92. Takaku, K., Oshima, M., Mioyshi, H., Matsui, M., Seidin, M.F., and Taketo, M.M. Intestinal tumori-genesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92:645–656, 1998.

    Article  PubMed  CAS  Google Scholar 

  93. Zaidi, N.H., Pretlow, T., O’Riordan, M.A., Dumenco, L.L., Allay, E., and Gerson, S.L. Transgenic expression of human MGMT protects against azoxymethane-induced aberrant crypt foci and G to A mutations in the K-ras oncogene of mouse colon. Carcinogenesis 16:451–456, 1995.

    CAS  Google Scholar 

  94. Fazeli, A., Steen, R.G., Dickinson, S.L., Bautista, D., Dietrich, W.F., Bronson, R.T., Bresalier, R.S., Lander, E.S., Costa, J., and Weinberg, R.A. Effects of p53 mutations on apoptosis in mouse intestinal and human colonic adenomas. Proc. Natl. Acad. Sci. USA 94:10199–10204, 1997.

    Article  PubMed  CAS  Google Scholar 

  95. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J., and Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684, 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chapkin, R.S., Lupton, J.R. (1999). Colonic Cell Proliferation and Apoptosis in Rodent Species. In: Colon Cancer Prevention. Advances in Experimental Medicine and Biology, vol 470. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4149-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4149-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6861-8

  • Online ISBN: 978-1-4615-4149-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics