Skip to main content

Gaussian-Based Approaches to Protein-Structure Similarity

  • Chapter
Molecular Modeling and Prediction of Bioactivity

Abstract

The number of protein structures available in the PDB1 (7415 in July 22, 1998) is constantly growing and it is expected to increase even more rapidly in coming years.2 This tremendous body of information is certainly having an impact in ligand design and modelling where the knowledge of the crystal structure of the target protein, or a closely related protein, makes a significant difference in the process of ligand optimization.3 When a crystal structure of the target protein is unavailable, ligand optimization must rely on indirect approaches based on the similarity between the structures of the ligands themselves.4 However, if a three-dimensional structure of the target protein is available docking methods can be applied,5 which have the potential of providing important information on the interaction between the ligand and the residues of the given receptor site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E.F.S. Meyer, M.D. Brice, J.R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi, The Protein Data Bank: A Computer-based Archival File for Macromolecular Structures, J. Mol. Biol. 112: 535 (1977).

    Article  CAS  Google Scholar 

  2. S.E. Brenner, C. Chothia, and T.J.P. Hubbard, Population Statistics of Protein Structures: Lessons from Structural Classifications, Carr. Opin. Struct. Biol. 7: 369 (1997).

    Article  CAS  Google Scholar 

  3. N.C. Cohen (Ed.). Molecular Modeling in Drug Design, Academic Press, San Diego (1996)

    Google Scholar 

  4. P.S. Charifson (Ed.). Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York (1997).

    Google Scholar 

  5. M.A. Johnson and G.M. Maggiora (Eds.). Concepts and Applications of Molecular Similarity, Wiley, New York (1990)

    Google Scholar 

  6. H. Kubinyi (Ed.). 3D QSAR in Drug Design: Theory, Methods, and Applications, ESCOM, Leiden (1993)

    Google Scholar 

  7. P.M. Dean (Ed.). Molecular Similarity in Drug Design, Blackie, London (1995).

    Google Scholar 

  8. J.M. Blaney and J.S. Dixon, A Good Ligand is Hard to Find: Automated Docking Methods, Perspect. Drug Discov. Design 1: 301 (1993)

    Article  CAS  Google Scholar 

  9. T.P. Lybrand, Ligand-Protein Docking and Rational Drug Design, Curr. Opin. Struct. Biol. 5: 224 (1995)

    Article  CAS  Google Scholar 

  10. G. Jones and P. Willett, Docking Small-Molecule Ligands into Active Sites, Curr. Opin. Biotechnol. 6: 652 (1995).

    Article  CAS  Google Scholar 

  11. J.P. Overington, Comparison of Three-Dimensional Structures of Homologous Proteins, Curr. Opin. Struct. Biot. 2: 394 (1992)

    Article  CAS  Google Scholar 

  12. C. Orengo, Classification of Protein Folds, Curr. Opin. Struct. Biol. 4: 429 (1994).

    Article  CAS  Google Scholar 

  13. C. Chothia and A.M. Lesk, The Relation Between Divergence of Sequence and Structure in Proteins, EMBO J. 5: 823 (1986)

    CAS  Google Scholar 

  14. J. Hubbard and T.L. Blundell, Comparisons of Solvent Inaccessible Cores of Homologous Proteins: Definitions Useful for Protein Modelling, Protein Eng. 1: 159 (1987)

    Article  CAS  Google Scholar 

  15. C. Sander and R. Schneider, Database of Homology-Derived Protein Structures and Structural Meaning of Sequence Alignment, Proteins 9: 56 (1991)

    Article  CAS  Google Scholar 

  16. T. Flores, C.A. Orengo, D. Moss, and J.M. Thornton, Conformational Characteristics in Structurally Similar Protein Pairs, Protein Sci. 2: 1811 (1993).

    Article  CAS  Google Scholar 

  17. W.R. Taylor, Identification of Protein Sequence Homology by Consensus Template Alignment, J. Mol. Biot. 188: 233 (1988)

    Article  Google Scholar 

  18. G.J. Barton and M.J.E. Sternberg, Flexible Protein Sequence Patterns: A Sensitive Method to Detect Weak Structural Similarities, J. Mol. Biot 212: 389 (1990)

    Article  CAS  Google Scholar 

  19. M. Hilbert, G. Bohm, and R. Jaenicke, Structural Relationships of Homologous Proteins as a Fundamental Principle in Homology Modelling, Proteins 17: 138 (1993).

    Article  CAS  Google Scholar 

  20. W.R. Taylor and C.A. Orengo, Protein Structure Alignment, J. Mol. Biot. 208: 1 (1989)

    Article  CAS  Google Scholar 

  21. J. Rose and F. Eisenmenger, A Fast Unbiased Comparison of Protein Structures by Means of the Needleman-Wunsch Algorithm, J. Mol. Evol. 32: 340 (1991)

    Article  CAS  Google Scholar 

  22. G. Vriend and C. Sander, Detection of Common Three-Dimensional Substructures in Proteins, Proteins 11: 52 (1991)

    Article  CAS  Google Scholar 

  23. N.N. Alexandrov, K. Takahashi, and N. Go, Common Spatial Arrangements of Backbone Fragments in Homologous and Non-Homologous J. Mol. Biol. 225: 5 (1992)

    Article  CAS  Google Scholar 

  24. H.M. Grindley, P.J. Artymiuk, D.W. Rice, and P. Willett, Identification of Tertiary Structure Resemblance in Proteins Using a Maximal Common Subgraph Isomorphism Algorithm, J. Mol. Biel. 229: 707 (1993)

    Article  CAS  Google Scholar 

  25. L. Holm and C. Sander, Protein Structure Comparison by Alignment of Distance Matrices, J. Mol. Biol. 233: 123 (1993)

    Article  CAS  Google Scholar 

  26. K. Diederichs, Structural Superposition of Proteins with Unknown Alignment and Detection of Topological Similarity Using a Six-Dimensional Search Algorithm, Proteins 23: 187 (1995)

    Article  CAS  Google Scholar 

  27. A. Falicov and F.E. Cohen, A Surface of Minimum Area Metric for the Structural Comparison of Proteins, J. Mol. Biol. 258: 871 (1996).

    Article  CAS  Google Scholar 

  28. F. Zu-Kang and M.J. Sippl, Optimum Superimposition of Protein Structures: Ambiguities and Implications, Folding & Design 1:123 (1996)

    Article  CAS  Google Scholar 

  29. A. Godzik, The Structural Alignment Between Two Proteins: Is There a Unique Answer?, Protein Sei. 5: 1325 (1996).

    Article  CAS  Google Scholar 

  30. a) J. Mestres, D.C. Rohrer, and G.M. Maggiora, MIMIC: A Molecular-Field Matching Program. Exploiting Applicability of Molecular Similarity Approaches, J. Comput. Chem. 18: 934 (1997)

    Article  CAS  Google Scholar 

  31. J. Mestres, D.C. Rohrer, and G.M. Maggiora, A Molecular Field-based Similarity Approach to Pharmacophoric Pattern Recognition, J. Mol. Graphics Mod. 15: 114 (1997)

    Article  CAS  Google Scholar 

  32. J. Mestres, D.C. Rohrer, and G.M. Maggiora, A Molecular Field-based Similarity Approach to Pharmacophoric Pattern Recognition, J. Mol. Graphics Mod. 15: 114 (1997)

    Article  CAS  Google Scholar 

  33. J. Mestres, P.D.J. Grootenhuis, D.C. Rohrer, and G.M. Maggiora, A Gaussian-Based Approach to Protein Structure Similarity. Application to Matrix Metalloproteinases and Cytochromes P450, to be submitted.

    Google Scholar 

  34. M. Gerstein, A.M. Lesk, and C. Chothia, Structural Mechanisms for Domain Movements in Proteins, Biochemistry 33: 6739 (1994)

    Article  CAS  Google Scholar 

  35. W.L. Nichols, G. Rose, L.F.T. Eyck, and B.H. Zymm, Rigid Domains in Proteins: An Algorithmic Approach to their Identification, Proteins 23: 38 (1995)

    Article  CAS  Google Scholar 

  36. W. Wriggers and K. Schulten, Protein Domain Movements: Detection of Rigid Domains and Visualization of Hinges in Comparisons of Atomic Coordinates, Proteins 29: 1 (1997).

    Article  CAS  Google Scholar 

  37. J. Mestres, unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mestres, J., Rohrer, D.C., Maggiora, G.M. (2000). Gaussian-Based Approaches to Protein-Structure Similarity. In: Gundertofte, K., Jørgensen, F.S. (eds) Molecular Modeling and Prediction of Bioactivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4141-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4141-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6857-1

  • Online ISBN: 978-1-4615-4141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics