Skip to main content

Handling Information from 3D Grid Maps for QSAR Studies

  • Chapter

Abstract

3D-QSAR is an interesting and expanding discipline1–2. Nowadays software for 3D-QSAR methodologies and efficient algorithms to describe molecules and to predict biological activity are more accessible and easy to use3–5. Progress were done on the numerical description of the biological systems which now are more precise and detailed6.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.H. Kim, G. Greco, E. Novellino, in 3D-QSAR in drug design: Vol 3, H. Kubinyi, G. Folkers, Y.C. Martin Eds, Kluwer Academic Publisher, Dordrecht, The Netherland, 1998, pp. 257–316.

    Google Scholar 

  2. A.J. Hopfinger, S. Wand, J.S. Tokarski, B. Jin, M. Albuquerque, P.J. Madhav, C. Duraiswami, Construction of 3D-QSAR models using the 4D-QSAR analysis formalism, J.Am.Chem.Soc., 119: 10509, (1997).

    Article  CAS  Google Scholar 

  3. W.J. Dunn III, A.J. Hopfinger, in 3D-QSAR in drug design: Vol 3, H. Kubinyi,G. Folkers, Y.C. Martin Ed.s, Kluwer Academic Publisher, Dordrecht, The Netherland, 1998, pp. 167–182

    Chapter  Google Scholar 

  4. G. Klebe, U. Abraham, T. Mietzner, Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, J.Med.Chem., 37: 4130, (1994).

    Article  CAS  Google Scholar 

  5. M. Pastor, G. Cruciani, S. Clementi, Smart region definition (SRD): a new way to improve the predictive ability and interpretability of 3D QSAR models, J.Med.Chem, 40: 1455 (1997).

    Article  CAS  Google Scholar 

  6. M. Pastor, G. Cruciani and K.A. Watson. A strategy for the incorporation of water molecules present in a ligand-binding site into a 3D-QSAR analysis, J. Med. Chem. 40: 4089 (1997).

    Article  CAS  Google Scholar 

  7. S. Clementi, G. Cruciani, D. Riganelli, R. Valigi, G. Costantino, M. Baroni, S. Wold. Autocorrelation as a tool for a congruent description of molecules in 3D-QSAR studies, Pharm. Pharmacol. Lett. 3: 5 (1993).

    CAS  Google Scholar 

  8. G. Cruciani, D. Riganelli, R. Valigi, S. Clementi, G. Musumarra, GRID characterization of heteroaromatics, in: QSAR and Molecular Modelling: Concepts, Computational Tools and Biological Applications, F. Sanz Ed., J.R. Prows Sci., 493–495, (1995)

    Google Scholar 

  9. S. Clementi, G. Cruciani, P. Fifi, D. Riganelli, R. Valigi, G. Musumarra, A new set of principal properties for heteroaromatics obtained by GRID, Quant. Struct.-Act. Relat., 15: 108 (1995).

    Article  Google Scholar 

  10. W. Guba and G. Cruciani, Molecular Field-Derived Descriptors for the Multivariate Modeling of Pharmacokinetic Data, this conference.

    Google Scholar 

  11. R. Mannhold, G. Cruciani, H. Weber, H. Lemoine, A. Derix, C. Weichel, M. Clementi, 6-varied benzopyrans as potassium channel activators: synthesis, vasodilator properties and multivariate analysis, work in preparation.

    Google Scholar 

  12. P.J. Goodford, Computational procedure for determining energetically favourable binding sites for biologically important macromolecules, J.Med.Chem., 28: 849 (1985).

    Article  CAS  Google Scholar 

  13. S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemom. Intell. Lab. Syst., 2: 37 (1993)

    Article  Google Scholar 

  14. G. Cruciani, S. Clementi, GOLPE, philosophy and applications in 3D-QSAR. In: Advances computer-assisted techniques in drug discovery, Vol. 3, Waterbeemd H.v. der, ed., Weinheim VCH, 61–88 (1995)

    Google Scholar 

  15. M. Pastor and G. Cruciani, A novel strategy for improving ligand selectivity in receptor-based drug design, J.Med.Chem, 38: 4637 (1995).

    Article  CAS  Google Scholar 

  16. R.D. III Cramer, D.E. Patterson, J.D. Bunte, Comparative Molecular Field Analysis (CoMFA). Effect of Shape on Binding of Steroid to Carrier Proteins, J.Am.Chem.Soc., 110: 5959 (1988).

    Article  CAS  Google Scholar 

  17. P. Gaillard, P-A. Carrupt, B. Testa, A. Boudon, Molecular lipophilicity potential, a tool for 3D QSAR: methods and applications, J.Comput.-Aided Mol. Des., 8: 83 (1994)

    Article  CAS  Google Scholar 

  18. CLIP 1.0, Institute of Medicinal Chemistry, University of Lausanne, 1996

    Google Scholar 

  19. J.A. Westerhuis, T. Kourti, J.F. MacGregor, Analysis of multiblock and hierarchical PCA and PLS models, Journal of Chemometrics, 1998 in press.

    Google Scholar 

  20. M.C. De Rosa and A. Berglund, A new method for predicting the alignment of flexible molecules and orienting them in a receptor cleft of known structure, J.Med.Chem. 41: 691 (1998).

    Article  CAS  Google Scholar 

  21. G. Cruciani, S. Clementi, M. Baroni, M. Pastor, in Rational Molecular Design in Drug research, T. Liljefors, F. Jorgensen, P. Krogsgaard-Larsen Eds, Alfred Benzon Symposium 42, 1998, pp. 87–97 (1998).

    Google Scholar 

  22. G. Cruciani, Chemometrics in 3D-QSAR and Structure-Based Drug Design, Second European Workshop in Drug Design, Siena, Italy (1998).

    Google Scholar 

  23. GOLPE 4.0, Multivariate Infometric Analysis, Viale dei castagni 16, Perugia, Italy (1998).

    Google Scholar 

  24. P. Gratteri, G. Cruciani, S. Scapecchi, M.N. Romanelli, F. Melani, 3D-QSAR, GRID descriptors and chemometric tools in the development of selective antagonist of the muscarinic receptor, 12’h European Symposium on Quantitative Structure-Activity Relathionhips, Denmark, Copenhagen (1998).

    Google Scholar 

  25. P. Floersheim, J. Nozulak, H.P. Weber, Experience with Comparative Molecular Field Analysis, In: Trends in QSAR and Molecular Modelling 92, Wermut ed., ESCOM, Leiden, 227 (1993).

    Chapter  Google Scholar 

  26. G.E. Kellog and D.J. Abraham, J.MoI.Graph, 10: 212 (1992).

    Article  Google Scholar 

  27. M. Baroni, G. Costantino, G. Cruciani, D. Riganelli, R. Valigi, S. Clementi, Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3D-QSAR problems, Quant.Struet-Act.Relat., 12: 9 (1993).

    Article  CAS  Google Scholar 

  28. B.L. Bush, R.B. Nachbar, J.Comp.-Aided Malec. Des., 7: 587 (1993).

    Article  CAS  Google Scholar 

  29. S.J. Cho, A. Tropsha, Cross-validated r2-guided region selection for comparative molecular field analysis: a simple method to achieve consistent results, J.Med.Chem., 38: 1060 (1995).

    Article  CAS  Google Scholar 

  30. U. Norinder, Single and domain mode variable selection in 3D QSAR applications, J.Chemometr. 10: 95 (1996).

    Article  CAS  Google Scholar 

  31. A.R. Ortiz, M.T. Pisabarro, F. Gaga and R. Wade, Prediction of drug binding affinities by comparative binding energy analysis. J. Med. Chem. 38: 2681 (1995).

    Article  CAS  Google Scholar 

  32. C. Perez, M. Pastor, A.R. Ortiz and F. Gago, Comparative binding energy (COMBINE) analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design, J. Med. Chem. 41: 836 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cruciani, G., Pastor, M., Clementi, S. (2000). Handling Information from 3D Grid Maps for QSAR Studies. In: Gundertofte, K., Jørgensen, F.S. (eds) Molecular Modeling and Prediction of Bioactivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4141-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4141-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6857-1

  • Online ISBN: 978-1-4615-4141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics