Skip to main content

The Computer Simulation of High Throughput Screening of Bioactive Molecules

  • Chapter
Book cover Molecular Modeling and Prediction of Bioactivity

Abstract

As the activity of synthesised bioactive compounds increases, it becomes more difficult to discover new chemical entities with substantial advantages. The average number of compounds synthesized in order to obtain a commercial candidate has risen from 10,000 to around 40–50,000. The recently-developed combinatorial methods greatly increase the numbers of compounds synthesized and tested but generate very large amounts of data. Clearly it has become very important to find new methods for extracting useful molecular design information from these large qauntities of structure-activity data. The data sets which derive from combinatorial chemistry and high throughput screening are often so massive that QSAR is the method of choice. The method, using multivariate statistics, was developed by Hansch and Fujital, and it has been successfully applied to many drug and agrochemical design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansch, C. and Fujita, T.,{rho}-{sigma}-{pi} analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J Am. Chem. Soc. (1964) 86, 1616

    Article  CAS  Google Scholar 

  2. Randic, M., On Characterisation of Molecular Branching. JAmer.Chem.Soc. (1975) 97, 6609

    Article  CAS  Google Scholar 

  3. Randic, M. and Trinajstic, N., In search of graph invariants of chemical interest. JMolec.Struct. (1993) 300, 551–571

    Article  CAS  Google Scholar 

  4. Kier, L.B. and Hall, L.H. The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Modelling, Molecular Connectivity in Structure-Activity Analysis, J.Wiley and Sons, New York, 1986.

    Google Scholar 

  5. Burden, F.R. Using Artificial Neural Networks to Predict Biological Activity from Simple Molecular Structural Considerations. Quant. Struct.-Act. Relat. (1996) 15, 7–11

    Article  CAS  Google Scholar 

  6. Burden, F.R. A Chemically Intuitive Molecular Index Based on the Eigenvalues of a Modified Adjacency Matrix. Quant. Struct.-Act. Relat. (1997) 16, 309–314

    Article  CAS  Google Scholar 

  7. Kier, L.B., Hall, L.H. in Reviews in Computational Chemistry, K.B. Lipkowitz and D.B. Boyd (Eds.) VCH Publishers,NY (1995) Volume 2, p374

    Google Scholar 

  8. Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J., Gasteiger, J. Locating Biologically Active Compounds in Medium-sized Heterogeneous Datasets by Topological Autocorrelation Vectors. J. Chem. Inf. Comput. Sci. (1996) 36, 1205–1213

    Article  CAS  Google Scholar 

  9. Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J., Gasteiger, J. Locating Biologically Active Compounds in Medium-sized Heterogeneous Datasets by Topological Autocorrelation Vectors. J. Chem. Inf. Comput. Sci. (1996) 36, 1205–1213

    Article  CAS  Google Scholar 

  10. Brown, R.D., Martin, Y.C. J., The Information Content of @d and d Strucural descriptors Relevant to Ligand-Receptor Binding. Chem. Inf. Comput. Sci. (1997) 37, 1–9

    Article  CAS  Google Scholar 

  11. Winkler, D.A. and Burden, F.R. Holographic QSAR of Benzodiazepines. Quant. Struct.-Activ. Relat. (1998b) 17, 224–231

    Article  CAS  Google Scholar 

  12. Burden, F.R. Molecular Identification Number for Substructure Searches J Chem. hrf. Comput. Sci. (1989) 29, 225–27.

    Article  CAS  Google Scholar 

  13. Pearlman, R. S.; Stewart, E. L.; Smith, K. M.; Balducci, R. Novel Software Tools for Combinatorial Chemistry and Chemical Diversity. Paper given at the 1997 Charleston Conference Advancing New Lead Discovery, Isle of Palms, SC (March 1997 ).

    Google Scholar 

  14. Platt, D.E.; Silverman, B.D. Registration, Orientation, and Similarity of Molecular Electrostatic Potentials through Multipole Matching. J Computat. Chem. (1996), 17, 358–66.

    Article  CAS  Google Scholar 

  15. Silverman, BB; Platt, D.R. Comparative molecular moment analysis (CoMMA): 3D–QSAR without molecular superposition. J. Med. Chem. (1996) 39, 2129–40

    Article  CAS  Google Scholar 

  16. Abraham, D.J.; Leo, A.J. Extension of the Fragment Method to calculate Amino Acid Zwitterion and Sidechain Partition Coefficients. Proteins: Struct. Funct. Genetics (1987), 2, 130–152.

    Article  CAS  Google Scholar 

  17. Kellogg, G.E., Semus, S.F., Abraham, Di–A New Method of Empirical Hydrophobic Field Calculation for CoMFA J. Comput.-Aided Molecular Design. J Comput.-Aided Mol. Des. (1991) 5, 545–552.

    Article  CAS  Google Scholar 

  18. Tripos Associates, 1699 South Hanley Road, Suite 303, St. Louis, MO 63144.HQSAR Software v 1.0. Tripos Associates: (http://www.tripos.com/products/hqsar.html)

  19. MacKay,D.J.C. A Practical Bayesian Framework for Backprop Networks, Neural Computation, (1992) 4, 415–447

    Article  Google Scholar 

  20. Rouvray, D.H. Making the Right Connection. Chem. Brit. (1993b) June, 495–498.

    Google Scholar 

  21. Ho, C.M.W. and Marshall, G.R. J. Comput.-Aided Mol. Des. (1995) 9 65–86

    CAS  Google Scholar 

  22. Rusinko, A., Sheridan, R.P., Nilakanta, R., Haraki, K.S., Bauman, N., Venkataraghavan, R. J. Chem. Inf. Comput. Sci. (1989)29, 251–255.

    Article  CAS  Google Scholar 

  23. Maddalena, D. and Johnston, G.A.R., Prediction of Receptor Properties and Binding Affinities of Ligands to Benzodiazepine/GABAA Receptors Using Neural Networks. JMed.Chem. 38, 715–724 (1995)

    Article  CAS  Google Scholar 

  24. Zheng, W., Cho, S.J., Tropsha, A. Rational combinatorial library design. I. Focus 2D: A new approach to the design of targeted combinatorial libraries. J. Chem. Inf. Comput. Sci., 1998, 38, 251–258.

    CAS  Google Scholar 

  25. Shi, L.M., Fan, Y., Myers, T.G., O’Connor, P.M., Paull, K.D., Friend, S.H., Weinstein, J. N. J Chem. Inf. Comput. Sci. (1998) 38, 189–99.

    Article  CAS  Google Scholar 

  26. Lui, D., Jiang, H., Chen, K., Ji, R. A new approach to design virtual combinatorial library with genetic algorithm based on 3D grid property. J Chem. 14 Comput. Sci (1998) 38, 233–42.

    Google Scholar 

  27. Horvath, D. A virtual screening approach applied to the search for trypanosome reductase inhibitors. J Med Chem. 1997, 40, 2412–2423.

    Article  CAS  Google Scholar 

  28. Vedani, A., Dobler, M., Zbinden, P. Quasi-atomistic receptor surface models: A bridge between 3-D QSAR and receptor modelling, J. Am. Chem. Soc. 1998, 120, 4471–4477.

    Article  CAS  Google Scholar 

  29. Polanski, J.J. The receptor-like neural network for modelling corticosteroid and testosterone binding globulins. J. Chem. Inf. Comput. Sci., 1997, 37, 553–561

    Article  CAS  Google Scholar 

  30. Zhang, W., Koehler, K.F., Harris, B., Skolnick, P., Cook, J.M., Synthesis of benzo-fused benzodiazepines employed a sprobes of the agonist phamracophore of benzodiazepine receptors. J Med Chem. (1994) 37, 745–757.

    Article  CAS  Google Scholar 

  31. Harrison, P.W., Barlin, G.B., Davies, L.P., Ireland, Si., Matyus, P., Wong, M.G. Syntheses, pharmacological evaluation and molecular modelling of substituted 6-alkoxyimidazo[1,2-b]pyridazines as new ligands for the benzodiazepine receptor. Eur. J. Med. Chem., (1996), 31, 651–662

    Article  Google Scholar 

  32. Davies, L.P., Barlin G.B., Ireland, S.J., Ngu, M.M.L.Substituted Imidazo[1,2-b]ptriazines. New Compounds with Activity at entral and peripheral Benzodiazepine receptors., Biochem. Pharmacol. (1992) 44, 1555–1561.

    Article  CAS  Google Scholar 

  33. Barlin, G.B., Davies, L.P., Davis, R.A., Harrison, P.W., Imidazo[1,2-b]pyridazines. XVII Synthesis and central nervous system activity of some 6-(alkylthio and chloro)-3-(methoxy, unsubstituted and benzamidomethyl)-2-aryl-imidazo[l,2-b]pyridazines containing methoxy, methylenedioxy and methyl substituents. Aust. J. Chem. (1994) 47, 2001–2012.

    Article  Google Scholar 

  34. Fryer, R.I., Zhang, P., Rios, R., Gu, Z-Q, Basile, A.S., Skolnick, P., Structure-activity relationship studies Computer-aided molecular modelling, synthesis and biological evaluation of 8-(benzyloxy)-2phenylpyrazolo[4,3-c]quinoline as a novel benzodiazepine receptor agomist ligand.

    Google Scholar 

  35. Wang, C-G, Langer, T., Kamath, P.G., Gu, Z-Q, Skolnick, P. Fryer, R.I., Computer-aided molecular modelling, synthesis and biological evaluation of 8-(benzyloxy)-2-phenylpyrazolo[4,3-c]quinoline as a novel benzodiazepine receptor agomist ligand. J. Med. Chem. (1995) 38, 950–957.

    Article  CAS  Google Scholar 

  36. Hollinshead, S.P., Trudelt, M.L., Skolnick, P., Cook, J.M. Structural requirements for agonist actions at the benzodiazepine receptor: studies with analogues of 6-(benzyloxy)-4-(methoxymethyl)-b-carboline-3carboxylic J Med. Chem. (1990) 33, 1062–1069.

    Article  CAS  Google Scholar 

  37. Allen, M.S., Hagen, T.J., Trudell, M.L., Codding, P.W., Skolnick, P., Cook, J.M., Synthesis of novel 3-substituted b-carbolines as benzodiazepine receptor ligands: Probing the benzodiazepine phannacophore J Med Chem. (1988)31, 1854–1861.

    Article  CAS  Google Scholar 

  38. Yokoyama, N., Ritter, B., Neubert, A.D.,. 2-Arylpyrazolo[4,3-c]quinolin-3-ones: Novel agonist, partial agonist and antagonist benzodiazepines, J Med Chem. (1982) 25, 337–339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burden, F.R., Winkler, D.A. (2000). The Computer Simulation of High Throughput Screening of Bioactive Molecules. In: Gundertofte, K., Jørgensen, F.S. (eds) Molecular Modeling and Prediction of Bioactivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4141-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4141-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6857-1

  • Online ISBN: 978-1-4615-4141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics