Skip to main content

Multivariate Design and Modelling in QSAR, Combinatorial Chemistry, and Bioinformatics

  • Chapter
Molecular Modeling and Prediction of Bioactivity

Abstract

The last decade has witnessed much progress in how to characterize and describe chemical structure, how to synthesize large sets of compounds, how to make simple and fast in-vitro assays, and how to determine the structure (sequence) of our genetic material. The possible consequences of this progress for drug design are great and exciting, but also bewilderingly complicated.

Fortunately, the last decade has also seen progress in how to investigate and model complicated systems, of which relationships between chemical structure and biological activity provide typical examples. These relationships are central in drug design and some related areas, notably combinatorial chemistry and bioinformatics.

The essential steps in the investigation of complicated systems include the following:

  1. 1.

    The appropriate quantitative parameterization of its parts (here the varying parts of the chemical structures / biopolymer sequences).

  2. 2.

    The appropriate measurements of the interesting properties of the system (here the “biological effects”).

  3. 3.

    Selecting a representative set of molecules (or other systems) to investigate and make the following measurements.

  4. 4.

    The analysis of the resulting data.

  5. 5.

    The interpretation of the results.

The use of multivariate characterization, design, and modelling in these steps will be discussed in relation to drug design, combinatorial chemistry (which compounds to make and test, and how to deal with the biological test results), and bioinformatics (how to parameterize and analyze biopolymer sequences).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Flansch, T. Fujita. ρ-σ-π-Analysis. A method for the correlation of Biological Activity and Chemical Structure, J. Am. Chem. Soc., 1964, 86, 1616–1626

    Article  Google Scholar 

  2. S. Hellberg, M. Sjöström, S. Wold, The Prediction of Bradykinin Potentiating Potency of Pentapeptides. An Example of a Peptide Quantitative Structure-Activity Relationship, Acta Chem. Scand., 1986, B40, 135–140

    Article  CAS  Google Scholar 

  3. S. Hellberg, M. Sjöström, B. Skagerberg, C. Wikström, S. Wold, On the design of multipositionally varied test series for quantitative structure-activity relationships, Acta Pharm. Jugosl., 1987, 37, 53–65

    CAS  Google Scholar 

  4. J. Jonson, L. Eriksson, S. Hellberg, M. Sjöström, S. Wold, Multivariate Parametrization of 55 Coded and Non-Coded Amino Acids, Quant. Struct.-Act. Relut., 1989, 8, 204–209

    Article  Google Scholar 

  5. M. Sandberg, L. Eriksson, J. Jonsson, M. Sjöström, S. Wold, New Chemical Descriptors Relevant for the Design of Biologically Active Peptides. A Multivariate Characterisation of 87 Amino Acids, J. Med. Chem., 1998, 41, 2481–2491

    Article  CAS  Google Scholar 

  6. J.L. Fauchere, M. Charton, L.B. Kier, A. Verloop, V. Pliska. Amino acid side chain parameters for correlation studies in biology and pharmacology, Mt. J. Pept. Protein. Res., 1988, 32, 269–78

    Article  CAS  Google Scholar 

  7. R. Carlson, M. P. Prochazka, T. Lundstedt, Principal Properties for Synthetic Screening: Ketones and Aldehydes, Acta Chem. Scand., 1988, B42, 145–156

    Article  Google Scholar 

  8. T. Lundstedt, R. Carlson, R. Shabana, Optimum Conditions for the Willgerodt-Kindler Reaction. 3. Amine Variation, Acta Chem. Scand., 1987, B41, 157–163

    Article  Google Scholar 

  9. R. Carlson, M. P. Prochazka, T. Lundstedt, Principal Properties for Synthetic Screening: Amines, Acta Chem. Scand., 1988, B42, 157–165

    Article  Google Scholar 

  10. R. Carlson, T. Lundstedt, Scope of Organic Synthetic Reactions. Multivariate Methods for Exploring the Reaction Space. An example by the Willgerodt-Kindler Reaction, Acta Chem. Scand., 1987, B41, 164–173

    Article  Google Scholar 

  11. R. Carlson, Design and optimization in organic synthesis, Elsevier, Amsterdam, 1992

    Google Scholar 

  12. L. Eriksson, J. Jonsson, M. Sjöström, S. Wald. A strategy for Ranking Environmentally Occuring Chemicals, Chemometrics and lmell. Lab. Syst., 1989, 7, 131–141

    Article  CAS  Google Scholar 

  13. L. Eriksson, E. Johansson. Multivariate design and modelling in QSAR, Chemometrics and Intel!. Lab. Syst., 1996, 34, 1–19

    Article  CAS  Google Scholar 

  14. L. Eriksson, E. Johansson and S. Wold, QSAR model Validation, SETAC Press, Pensacola, USA, In press, 1997

    Google Scholar 

  15. L. Eriksson, E. Johansson, M. Müller, S. Wold. Cluster-based Design in Environmental QSAR, Quant. Struct.-Act. Relat., 1997, 16, 383–390

    Article  CAS  Google Scholar 

  16. E.J. Martin, J.M Blaney, M.A. Siani, D.C. Spellmeyer, A.K. Wong, W.H. Moos, Measuring diversity: Experimental design of combinatorial.libraries for drug discovery, J. Med. Chem., 1995, 38, 110–114

    Google Scholar 

  17. R.D. Cramer, III, D.E. Patterson, J.D. Bunce. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins, J. Am. Chem. Soc., 1988, 110, 5959–5967

    Article  CAS  Google Scholar 

  18. P. J. Goodford. A Computational Procedure for Determining Energetically Favourable Binding Sites on Biologically Important Macromolecules, J. Med. Chem., 1985, 28, 849–857

    Article  CAS  Google Scholar 

  19. P. Goodford. Multivariate Characterisation of Molecules for QSAR Analysis, J. Chemometrics, 1996, 10, 107–117

    Article  CAS  Google Scholar 

  20. A. Berglund, C. De Rosa, S. Wold. Alignment of Flexible Molecules at their Receptor Site Using 3D Descriptors and Hierarchical-PCA, J. Comput. Aided Mol. Des., 1997, 11, 601–612

    Article  CAS  Google Scholar 

  21. J.R. Broach, J. Thorner, High-throughput Screening for Drug Discovery, Nature, 1996, Suppl., 384, 1416

    Google Scholar 

  22. P.F. de Aguiar, B. Bourguignon, M.S. Khots, D.L. Massart, R. Phan-Than-Luu. D-optimal designs, Chemometrics and Intell. Lab. Syst., 1995, 30, 199–210

    Article  Google Scholar 

  23. E. Marengo, R. Todeschini. A new algorithm for optimal, distance-based experimental design, Chemometrics and lntell. Lab. Syst., 1992, 16, 37–44

    Article  CAS  Google Scholar 

  24. P.N. Craig, C.H. Hansch J.W. Farland, Y.C. Martin, W.P. Purcell, R. Zahradnik, Minimal statistical data for structure function correlations, J. Med. Chem. 1971, 14, 447

    Article  CAS  Google Scholar 

  25. C. Hansch, S.H. Unger, A.B. Forsythe. Strategy in drug design. Cluster analysis as an aid in the selection of substituents, J. Med. Chem., 1973, 16, 1217–1222.

    Article  CAS  Google Scholar 

  26. V. Austel. Eur. J. Med. Chem., 1982, 17, 9–16

    CAS  Google Scholar 

  27. Å. Lindgren, M. Sjöström, S. Wold. QSAR Modelling of the Toxicity of Some Technical Non-Ionic Surfactants Towards Fairy Shrimps, Quant. Struct.-Act.-Relat. 1996, 15, 208–218

    Article  CAS  Google Scholar 

  28. S. Wold, M. Sjöström. ‘Linear Free Energy Releationships as Tools for Investigating Chemical Similarity — Theory and Practice’. In Correlation Analysis in Chemistry (Ed. N.B. Chapman, J. Shorter) Plenum Publishing Corporation, 1978

    Google Scholar 

  29. S. Wold, M. Sjöström. ‘Linear Free Energy Releationships as Tools for Investigating Chemical Similarity — Theory and Practice’. In Correlation Analysis in Chemistry (Ed. N.B. Chapman, J. Shorter) Plenum Publishing Corporation, 1978

    Google Scholar 

  30. J. E. Jackson, A Users Guide to Principal Components, Wiley, New York, 1991

    Book  Google Scholar 

  31. S. Wold. Principal Component Analysis, Chemometrics and Intell. Lab. Syst. 1987, 2, 37–52

    Article  CAS  Google Scholar 

  32. T. Lundstedt, P. M. Andersson, S. Clementi, G. Cruciani, N. Kettaneh. A. Linusson, B. Nordén, M. Pastor, M. Sjöström, S. Wold, ‘Intelligent Combinatorial Libraries’. In Computer-Assisted Lead Finding and Optimization (Ed. H. van de Waterbeemd) Verlag Helvetica Chimica Acta, Basel, Switzerland, 1997, 191–208

    Google Scholar 

  33. A. Linusson, S. Wold, B. Nordén, In press. Chemometrics and Intel!. Lab. Syst., 1998

    Google Scholar 

  34. S. S. Young, D. M. Hawkins, Analysis of a 29 Full Factorial Chemical Library, J. Med. Chem., 1995, 38, 2784–2788

    Article  CAS  Google Scholar 

  35. P.M. Andersson, A. Linusson, S. Wold, M. Sjöström,T. Lundstedt, B. Nordén. ‘Design of Small Libraries for Lead Exploration’. In Molecular Diversity in Drug Design (Ed. R. Lewis, P.M. Dean) In press 1998

    Google Scholar 

  36. Tsar 3.11, Oxford Molecular Group, www.oxmol.co.uk

    Google Scholar 

  37. S. Wold, E. Johansson, M. Cocchi. ‘PLS–Partial Least-Squares Projections to Latent Structures’. In 3D QSAR in Drug Design; Theory, Methods and Applications. (Ed. H. Kubinyi) ESCOM Science Publishers, Leiden, Holland, 1993, 523–550

    Google Scholar 

  38. S. Wold. ‘PLS for Multivariate. Linear Modeling’. In QSAR: Chemometric Methods in Molecular Design, Methods and Principles in Medicinal Chemistry, Vol 2., (Ed. H. van de Waterbeemd) Verlag Chemie, Weinheim, Germany, 1995, 195–218

    Google Scholar 

  39. P. Lindgren, M. Sjöström, S. Wold. PLS-modelling of detergency performance for some technical nonionic surfactants, Chemometrics and lntell. Lab Syst., 1996, 32, 111–124

    Article  CAS  Google Scholar 

  40. E. Marshall, Bioinformatics: Hot Property: Biologists Who Compute, Science, 272 (1996) 1730–1732

    Article  CAS  Google Scholar 

  41. J. B. Grace, Bioinformatics: Mathematical Challenges and Ecology, Science, 275 (1996) 1861e - 1865e

    Article  Google Scholar 

  42. J. Jonson, M. Sandberg & S. Wold, The Evolutionary Transition from Uracil to Thymine Balances the Genetic Code, J. of Chemometrics, 1996, 10, 153–170

    Google Scholar 

  43. M. Sandberg, M. Sjöström, J. Jonsson. A Multivariate Characterization of tRNA Nucleosides, J. of Chemometrics, 1996, 10, 493–508

    Article  CAS  Google Scholar 

  44. S. Wold, J. Jonsson, M. Sjöström, M. Sandberg, S. Rännar, DNA and Peptide Sequences and Chemical Processes Multivariately Modelled by PCA and PLS Projections to Latent Structures, Anal. Chico. Acta, 1993, 227, 239–253

    Article  Google Scholar 

  45. M. Sjöström, S. Rännar, t1. Wieslander. Polypeptide sequnce property relationships in Escherichia tali based on auto cross covariances, Chemometrics and Intell. Lab. Syst. 1995, 29, 295–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wold, S. et al. (2000). Multivariate Design and Modelling in QSAR, Combinatorial Chemistry, and Bioinformatics. In: Gundertofte, K., Jørgensen, F.S. (eds) Molecular Modeling and Prediction of Bioactivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4141-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4141-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6857-1

  • Online ISBN: 978-1-4615-4141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics