Skip to main content

Prospects and Progress in Ellagitannin Synthesis

  • Chapter
Plant Polyphenols 2

Part of the book series: Basic Life Sciences ((BLSC,volume 66))

Abstract

The ellagitannin family of secondary plant metabolites presents a rich array of challenges for contemporary organic synthesis. The myriad intra- and inter-molecular coupling modes available to galloyl rings appended to a glucose core, along with a range of post-coupling modifications, define a vast matrix of bond-forming possibilities, many of which are represented within the 500+ structurally characterized members.1–4 A heightened interest in this class of natural products is fueled by recent observations that several ellagitannins display remarkable levels of activity in various anticancer and antiviral assays and hence may serve as promising leads for development of novel therapeutics.3,5–7 Progress toward that goal will benefit from access to significant quantities of natural material as well as designed analogs for delineation of structure/activity profiles and elucidation of biological mechanism-of-action. These latter goals, and possibly the former goal as well, can only be met through a program of total chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haslam, E. Plant polyphenols—vegetable tannins revisited. Cambridge University Press, Cambridge, (1989).

    Google Scholar 

  2. Haslam, E.; Cai, Y. Plant polyphenols (vegetable tannins*): gallic acid metabolism. Nat. Prod. Reports:41 (1994).

    Google Scholar 

  3. Berlinck, R.G.S.; Hatano, T.; Okuda, T.; Yoshida, T. Hydrolyzable tannins and related polyphenols. In: Herz, W.; Kirby, G.W.; Moore, R.E.; Steglich, W.; Tamm, Ch. (eds.). Progress in the chemistry of organic natural products. Springer-Verlag, New York, p.1 (1995).

    Google Scholar 

  4. Quideau S.; Feldman K.S. Ellagitannin chemistry. Chem. Rev. 96:475 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. Okuda, T.; Yoshida, T.; Hatano, T. Chemistry and biological activity of tannins in medicinal plants. In: Wagner, H.; Farnsworth, N.R. (eds.) Economic and medicinal plant research, v.5. Plants and traditional medicines. Academic Press Ltd., London, p.129 (1991).

    Google Scholar 

  6. Okuda, T.; Yoshida, T.; Hatano, T. Polyphenols from Asian plants. In: Huang, M.-T., Ho; C-T.; Lee, C.Y. (eds.) Phenolic compounds in food and their effects on health II. American Chemical Society, Washington, p. 160 (1992).

    Chapter  Google Scholar 

  7. Okuda, T.; Yoshida, T.; Hatano, T. Pharmacologically active tannins isolated from medicinal plants. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols: synthesis, properties, significance. Plenum Press, New York, p. 539 (1992).

    Google Scholar 

  8. Nonaka G-I.; Nakayama S.; Nishioka I. Tannins and related compounds. LXXXIII. Isolation and structures of hydrolyzable tannins, Phillyraeoidins A-E from Quercus phillyraeoides. Chem. Pharm. Bull. 37:2030 (1989).

    Article  CAS  Google Scholar 

  9. Okuda T.; Hatano T.; Ogawa N.; Kira R.; Matsuda M. Cornusiin A, a dimeric ellagitannin forming four tautomers, and accompanying new tannins in Cornus officinalis. Chem. Pharm. Bull. 32:4662 (1984).

    Article  CAS  Google Scholar 

  10. Okuda T.; Hatano T.; Yazaki K.; Ogawa N. Rugosin A, B, C and praecoxin A, tannins having a valoneoyl group. Chem. Pharm. Bull. 30:4230 (1982).

    Article  CAS  Google Scholar 

  11. Hatano T.; Hattori S.; Okuda T. Tannins of Coriaria japonica A. GREY. I. Coriariins A and B, new dimeric and monomeric hydrolyzable tannins. Chem. Pharm. Bull. 34:4092 (1986).

    Article  CAS  Google Scholar 

  12. McDonald, P.D.; Hamilton, G.A. Mechanisms of phenolic oxidative coupling reactions. In: Trahanovsky, W.S. (ed.) Oxidation in organic chemistry, v.5. Academic Press, New York, p.97 (1973).

    Google Scholar 

  13. Mohamadi F.; Richards N.G.J.; Guida W.C.; Liskamp R.; Lipton M.; Caufield C.; Chang G.; Hendrickson T.; Still W.C. MacroModel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 11:440 (1990).

    Article  CAS  Google Scholar 

  14. Yoshida T.; Nakata F.; Hosotani K.; Nitta A.; Okuda T. Dimeric hydroysable tannins from Melastoma malabathricum. Phytochemistry 31:2829 (1992).

    Article  CAS  Google Scholar 

  15. Löwe, J.F.F.F. Über die Bildung von Ellagsäure aus Gallussäure. Z. Chem. 4:603 (1868).

    Google Scholar 

  16. Grießsmayer, V. Über das Verhalten von Stärke und Dextrin gegen Jod und Gerbsäure. Ann. 160:40 (1871).

    Google Scholar 

  17. Perkin, A.G.; Nierenstein, M. Some oxidation products of the hydroxybenzoic acids and the constitution of ellagic acid. Part 1. J. Chem. Soc. 87:1412 (1905).

    CAS  Google Scholar 

  18. Erdtman H. Phenoldehydrierungen VI. Dehydrierende kupplung einiger guajakolderivate. Svensk. Kern. Tidskr. 47:223 (1935).

    CAS  Google Scholar 

  19. Hathway, D.E. Autoxidation of polyphenols. Part 1._Autoxidation of methyl gallate and its O-methyl ethers in aqueous ammonia. J. Chem. Soc.:519 (1957).

    Google Scholar 

  20. Jurd L. Plant polyphenols. VI Experiments on the synthesis of 3, 3′-and 4,4′-di-O-methylellagic acid. J. Am. Chem. Soc. 81:4606 (1959).

    Article  CAS  Google Scholar 

  21. Szarkowski J.W.; Golaszewski T. Uber die Bildung der Ellagsäure durch UV-Strahlen. Naturwissenschaften 48:457 (1961).

    Article  Google Scholar 

  22. Gupta R.K.; Al-Shafi S.M. K.; Layden K.; Haslam E. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 2._Esters of (S)-hexahydroxydiphenic acid with D-glucopyranose (4C1). J. Chem. Soc., Perkin Trans. 1:2525 (1982).

    Article  Google Scholar 

  23. Mayer, W.; Hoffmann, E.H.; Losch, N.; Wolf, H.; Wolter, B.; Schilling, G. Dehydrierungsreaktionen mit Gallussäureestern. Ann.:929 (1984).

    Google Scholar 

  24. Grimshaw, J.; Haworth, R.D. Flavogallol. J. Chem. Soc.:4225 (1956).

    Google Scholar 

  25. Nelson T.D.; Meyers A.I. A rapid total synthesis of an ellagitannin. J. Org. Chem. 59:2577 (1994).

    Article  CAS  Google Scholar 

  26. Lipshutz B.H.; Liu Z.-P; Kayser F. Cyanocuprate-mediated intramolecular biaryl couplings applied to an ellagitannin. Synthesis of (+)-O-permethyltellimagrandin II. Tetrahedron Lett 35:5567 (1994).

    Article  CAS  Google Scholar 

  27. Critchlow A.; Haslam E.; Haworth R.D.; Tinker P.B.; Waldron N.M. The oxidation of some pyrogallol and purpurogallin derivatives. Tetrahedron 23:2829 (1967).

    Article  PubMed  CAS  Google Scholar 

  28. Horner L.; Durckheimer W.; Weber K.-H.; Dolling K. Synthese, Struktur und eigen-schaften von l′.2′-dihydroxy-6.7-benzotropolonen. Chem. Ber. 97:312 (1964).

    Article  CAS  Google Scholar 

  29. Schmidt O.Th.; Mayer W. Natürliche Gerbstoffe. Angew. Chem. 68:103 (1956).

    Article  CAS  Google Scholar 

  30. Blumenfeld S.; Friedlander P. Allgemeine Reaktionen Aromatischer Chinone. Chem. Ber. 30:2563 (1897).

    Article  CAS  Google Scholar 

  31. Pfundt, G.; Schenk, G.O. Cycloadditions to o-quinones, 1, 2-diketones and some of their derivatives. In: Hamer, J. (ed.) 1,4-Cycloaddition reactions. The Diels Alder reaction in het-erocycle synthesis. Academic Press, New York, p. 345 (1967).

    Google Scholar 

  32. Ansell, M.F.; Gosden, A.F.; Leslie, V.J.; Murray, R.A. The reactions of o-benzoquinones with cyclopentadiene. J. Chem. Soc. (C).:1401 (1971).

    Google Scholar 

  33. Lee J.; Snyder J.K. Ultrasound promoted cycloadditions in the synthesis of Salvia Militiorrhiza abietanoid o-quinones. J. Org. Chem. 55:4995 (1990).

    Article  CAS  Google Scholar 

  34. Waldron, N.M. The constitution of the dimers of 4,5-di-t-butyl-3-hydroxy-o-benzoquinone and 5-t-butyl-3-hydroxy-o-benzoquinone. J. Chem. Soc. (C):1914 (1968).

    Google Scholar 

  35. Vol’era, V.B.; Khristyuk A.L.; Zhorin V.A.; Arhipov I.L.; Stukan R.A.; Ershov V.V.; Enikolopyan N.S. Conversion of 3,6-di-tert-butylorthobenzoquinone in Bridgeman presses. Izv. Akad. Nauk SSSR, Ser. Khim. 33:443 (1984) (Engl. Trans.).

    Google Scholar 

  36. Schmidt O.Th.; Wieder G. Zur Synthese der “Dehydro-hexahydroxy-diphensäure”. Ann. 706:198 (1967).

    CAS  Google Scholar 

  37. Horner L.; Dürckheimer, W. Die Konfiguration der dimeren o-Benzochinone und das Prinzip des geringsten Gesamtmoments für die Anordnung der Reaktionspartner in Orientierungskomplexen. Chem. Ber. 95:1219 (1962).

    Article  CAS  Google Scholar 

  38. Magnusson R.; Alder E. Periodate oxidation of phenols. Acta Chem. Scand. 13:505 (1959).

    Article  Google Scholar 

  39. Müller, E.; Bayer, O. Chinone, Teil II. In: Grundmann, C. (ed.) Methoden der Organischen Chemie (Houben-Weyl). Georg Thieme, Stuttgart, p. 139 (1979).

    Google Scholar 

  40. Feldman K.S.; Ensel S.M. Ellagitannin chemistry. The first example of biomimetic diastereoselective oxidative coupling of a glucose-derived digalloyl substrate. J. Am. Chem. Soc. 115:1162 (1993).

    Article  CAS  Google Scholar 

  41. Feldman K.S.; Ensel S.M. Ellagitannin chemistry. Preparative and mechanistic studies of the biomimetic oxidative coupling of galloyl esters. J. Am. Chem. Soc. 116:3357 (1994).

    Article  CAS  Google Scholar 

  42. Bubb, W.A.; Sternhell, S. The Wessely oxidation. Tetrahedron Lett.:4499 (1970).

    Google Scholar 

  43. Itoh, T.; Chika, J.-I.; Shirakami, S.; Ito, H.; Yoshida, T.; Kubo, Y.; Uenishi, J.-I. J. Org. Chem. 61:3700 (1996).

    Article  PubMed  CAS  Google Scholar 

  44. Khanbabaee K.; Schulz C.; Lotzerich K. Synthesis of enantiomerically pure strictinin using a stereoselective esterification reaction. Tetrahedron Lett. 38:1367 (1998).

    Article  Google Scholar 

  45. Feldman K.S.; Kirchgessner K.A. Probing ellagitannin stereochemistry: the rotational barrier of a model (4,6)-hexamethoxydiphenoyl glucopyranoside. Tetrahedron Lett. 38:7981 (1997).

    Article  CAS  Google Scholar 

  46. Feldman, K.S.; Ensel, S.M.; Minard, R.M. Ellagitannin chemistry. The first total chemical synthesis of an ellagitannin natural product, tellimagrandin 1. J. Am. Chem. Soc. 116:1742 (1994).

    Article  CAS  Google Scholar 

  47. Feldman, K.S.; Sahasrabudhe, K. Ellagitannin chemistry. Syntheses of tellimagrandin II and a dehydrodigalloyl ether-containing dimeric ellagitannin analog of coriariin A. J. Org. Chem. 63: (1999), in press.

    Google Scholar 

  48. Feldman K.S.; Sambandam A. Ellagitannin chemistry. The first total chemical synthesis of an O(2), O(3)-galloyl-coupled ellagitannin, sanguiin H-5._J. Org. Chem. 60:8171 (1995).

    CAS  Google Scholar 

  49. Feldman K.S.; Smith R.S. Ellagitannin chemistry. First total synthesis of the 2,3-and 4,6-coupled ellagitannin pedunculagin. J. Org. Chem. 61:2606 (1996).

    Article  PubMed  CAS  Google Scholar 

  50. Feldman K.S.; Hunter K.L. On the basis for regioselective oxidation within a tetragalloylpyranose substrate. Tetrahedron Lett. 39:8943 (1998).

    Article  CAS  Google Scholar 

  51. Cozzi F.; Cinquini M.; Annunziata R.; Dwyer T.; Siegel J.S. Polar/πinteractions between stacked aryls in 1,8-diarylnaphthylenes. J. Am. Chem. Soc. 114:5729 (1992).

    Article  CAS  Google Scholar 

  52. Cozzi F.; Cinquini M.; Annuziata R.; Siegel J.S. Dominance of polar/π over charge-transfer effects in stacked phenyl interactions. J. Am. Chem. Soc. 115:5330 (1993).

    Article  CAS  Google Scholar 

  53. Quideau S.; Feldman K.S.; Appel H.M. Chemistry of galloyl-derived o-quinones: reactivity toward nucleophiles. J. Org. Chem. 60:4982 (1995).

    Article  CAS  Google Scholar 

  54. Feldman K.S.; Quideau S.; Appel H.M. Galloyl-derived orthoquinones as reactive partners in nucleophilic additions and Diels-Alder dimerizations: a novel route to the dehydrodigalloyl linker unit of agrimoniin-type ellagitannins. J. Org. Chem. 61:6656 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. Yoshida T.; Maruyama T.; Nitta A.; Okuda T. Eucalbanins A, B, and C, monomeric and dimeric hydrolyzable tannins from Eucalyptus alba REINW. Chem. Pharm. Bull. 40:1750 (1992).

    Article  CAS  Google Scholar 

  56. Quideau S.; Feldman K.S. Ellagitannin chemistry. The first synthesis of dehydrohexahy-droxydiphenoate esters from oxidative coupling of unetherified methyl gallate. J. Org. Chem. 62:8809 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Feldman, K.S., Sahasrabudhe, K., Quideau, S., Hunter, K.L., Lawlor, M.D. (1999). Prospects and Progress in Ellagitannin Synthesis. In: Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J. (eds) Plant Polyphenols 2. Basic Life Sciences, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4139-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4139-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46218-4

  • Online ISBN: 978-1-4615-4139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics