Skip to main content

Toward Understanding Monomeric Ellagitannin Biosynthesis

  • Chapter

Part of the book series: Basic Life Sciences ((BLSC,volume 66))

Abstract

Ellagitannins are found in approximately 40 percent of all dicotyledenous plants ranging from raspberries to the oaks.1–3 By definition, this class of compounds is composed of only glucose and biaryl-linked gallic acid. Though these two compounds are relatively simple in structure, the complexity of the compounds that can be formed is tremendous. Ellagitannins are seemingly a natural combinatorial library, with over 500 different compounds isolated and identified to date. Due to their relatively high oxidation potential4 and ability to bind heavy metals5 and proteins,6 research efforts have been directed at understanding their roles in environment-plant interactions,7 human health,8 timber processing,9 and spirits manufacture.10

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haddock E.A.; Gupta R.K.; Al-Shafi S.M.K.; Layden K.; Haslam E.; Magnolato D. The metabolism of gallic acid and hexahydroxydiphenic acid in plants: biogenetic and molecular taxonomic considerations. Phytochemistry. 21:1049 (1982).

    Article  CAS  Google Scholar 

  2. Okuda T.; Yoshida T.; Hatano T. Classification of oligomeric hydrolysable tannins and specificity of their occurrence in plants. Phytochemistry. 32:507 (1993).

    Article  CAS  Google Scholar 

  3. Gottlieb O.R.; Borin M.R.M.B.; Kaplan M.A.C. Biosynthetic interdependence of lignins and secondary metabolites in angiosperms. Phytochemistry. 40:99 (1995).

    Article  CAS  Google Scholar 

  4. Haslam E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J. Nat. Prod. 59:205 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. Mila I.; Scalbert A.; Expert D. Iron withholding by plant polyphenols and resistance to pathogens and rots. Phytochemistry. 42:1551 (1996).

    Article  CAS  Google Scholar 

  6. Luck G.; Liao H.; Murray N.J.; Grimmer H.R.; Warminski E.E.; Williamson M.P.; Lilley T.H,; Haslam E. Polyphenols, astringency and proline-rich proteins, Phytochemistry. 37:357 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. Appel H. Phenolics in ecological interactions: the importance of oxidation. J. Chem. Ecol. 19:1521 (1993).

    Article  CAS  Google Scholar 

  8. Okuda T.; Yoshida T.; Hatano T. Ellagitannins as active constituents of medicinal plants. Planta Medica. 59:117 (1989).

    Article  Google Scholar 

  9. Charrier B.; Haluk J.P.; Metche M. Characterization of European oakwood constituents acting in the brown discoloration during kiln drying. Holzforschung. 49:168 (1995).

    Article  CAS  Google Scholar 

  10. Vivas N.; Glories Y. Role of oak wood ellagitannins in the oxidation process of red wines during ageing. Am. J. Enol. Vitic. 47:103 (1996).

    CAS  Google Scholar 

  11. Quideau S.; Feldman K.S. Ellagitannin chemistry. Accts. Chem. Res. 96:475 (1996).

    CAS  Google Scholar 

  12. Haslam, E.; Cai, Y. Plant polyphenols (vegatable tannins): Gallic acid metabolism. Nat. Prod. Rep. 41 (1994).

    Google Scholar 

  13. Gross, G.G. Enzymatic synthesis of gallotannins and related compounds. In: Stafford, H.A.; Ibrahim, R.K. (eds.) Phenolic metabolism in plants. Plenum Press, New York. p. 297 (1992).

    Google Scholar 

  14. Werner I.; Bacher A.; Eisenreich W. Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi. J. Biol. Chem. 272:25474 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Gross, G.G. Enzymes in the biosynthesis of hydrolyzable tannins. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols—synthesis, properties, significance. Plenum Press, New York. p. 43 (1992).

    Google Scholar 

  16. Hofman A.S.; Gross G.G. Biosynthesis of gallotannins: Formation of polygalloylglucoses by enzymatic acylation of 1,2,3,4,6-penta-O-galloylglucose. Arch. Biochem. Biophys. 283:530 (1990).

    Article  Google Scholar 

  17. Eliel, E.L.; Wilen, S.H. Stereochemistry of organic molecules. Wiley-Interscience, New York pp. 1119–1121 (1995).

    Google Scholar 

  18. Davin L.B.; Wang; H.-B.; Crowell A.L.; Bedgar D.L.; Martin D.M.; Sarkanen S., Lewis N.G. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science. 275:362 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. Feldman K.S.; Kirchgessner K.A. Probing ellagitannin stereochemistry: The rotational barrier of a model (4,6)-hexamethoxydiphenoyl glucopyranoside. Tetrahedron Letters. 38:7981 (1997).

    Article  CAS  Google Scholar 

  20. Helm R.F.; Ranatunga T.D.; Chandra M. Lignin-hydrolyzable tannin interactions in wood. J. Agric. Food Chem. 45:3100 (1997).

    Article  CAS  Google Scholar 

  21. Haddock, E.A.; Gupta, R.K.; Haslam, E. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 3. Esters of (R)-and (S)-hexahydroxydiphenic acid and dehy-drodiphenic acid with D-glucopyranose (1C4 and related conformations). J. Chem. Soc., Perkin Trans. 1.:2535 (1982).

    Article  Google Scholar 

  22. Ishimaru K.; Shimomura K. Tannin production in hairy root culture of Geranium thunbergii. Phytochemistry. 30:825 (1991).

    Article  CAS  Google Scholar 

  23. Neera S.; Ishimaru K. Tannin production in cell cultures of Sapium sebiferum. Phytochemistry 31:833 (1992).

    CAS  Google Scholar 

  24. Neera S.; Arakawa H.; Ishimaru K. Tannin production in Sapium sebiferum callus cultures. Phytochemistry. 31:4143 (1992).

    Article  CAS  Google Scholar 

  25. Taniguchi S.; Yoshida T.; Nakamura N.; Nose M.; Takeda S.; Yabu-Uchi R.; Ito H.; Yazaki K. Production of macrocyclic ellagitannin oligomers by Oenothera laciniata callus cultures. Phytochemistry. 48:981 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka T.; Kouno I.; Nonaka G. Glutathione-mediated conversion of the ellagitannin geraniin into chebulagic acid. Chem. Pharm. Bull. 44:34 (1996).

    Article  CAS  Google Scholar 

  27. Tanaka T.; Jiang Z.-H.; Kouno I. Structures and biogenesis of rhiopteleanins, ellagitannins formed by stereospecific intermolecular C-C oxidative coupling, isolated from Rhioptelea chiliantha. Chem. Pharm. Bull. 45:1915 (1997).

    Article  CAS  Google Scholar 

  28. Vivas N.; Laguerre M.; Glories Y.; Bourgeois G.; Vitry C. Structure simulation of two ellagitannins from Quercus robur L. Phytochemistry. 39:1193 (1995).

    Article  CAS  Google Scholar 

  29. Tanaka T.; Kirihara S.; Nonaka G.; Nishioka I. Tannins and related compounds. CXXIV. Five new ellagitannins, platycaryanins A, B, C, and D, and platycariin, and a new complex tannin, strobilanin, from the fruits and bark of Platycarya strobilacea (Sieb et Zucc), and biomimetic synthesis of C-glycosidic ellagitannins from glucopyranose-based ellagitannins. Chem. Pharm. Bull. 41:1708 (1993).

    Article  CAS  Google Scholar 

  30. Nonaka G.; Sakai T.; Tanaka T.; Mihashi K.; Nishioka I. Tannins and related compounds. XCVII. Structure revision of C-glycosidic ellagitannins, castalagin, vescalagin casuarinin and stachyurin, and related hydrolyzable tannins. Chem. Pharm. Bull. 38:2151 (1990).

    Article  CAS  Google Scholar 

  31. Hervé du Penhoat, C.L.M.; Michon, V.M.F.; Peng, S.; Viriot, C.; Scalbert, A.; Gage, D. Structural elucidation of new dimeric ellagitannins from Quercus robur L. Roburins A-E. J. Chem. Soc. Perkin Trans. 1.:1653 (1991).

    Article  Google Scholar 

  32. Tanaka T.; Ueda N.; Shinohara H.; Nonaka G.; Fujioka T.; Mihashi K.; Kouno I. C-Glycosidic ellagitannin metabolites in the heartwood of Japanese chestnut tree (Castanea crenata Sieb. et Zucc.). Chem. Pharm. Bull. 44:2236 (1996).

    Article  CAS  Google Scholar 

  33. Tanaka, T.; Ueda, N.; Shinohara, H.; Nonaka, G.; Kouno I. Four new C-glycosidic ellagitannins, castacrenins D-G, from Japanese chestnut wood (Castanea crenata Sieb. et Zucc.). Chem. Pharm. Bull. 45:1751 (1997).

    Article  CAS  Google Scholar 

  34. Waterman, P.G.; Mole, S. Analysis of phenolic plant metabolites. Blackwell Scientific Publications, Oxford. pp. 66–103 (1994).

    Google Scholar 

  35. Scalbert A.; Monties B.; Janin G. Tannins in woods: comparison of different estimation methods, J. Agric. Food Chem. 37:1324 (1989).

    Article  CAS  Google Scholar 

  36. Scalbert, A., Quantitative methods for the estimation of tannins in plant tissues, In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols—synthesis, properties, significance. Plenum Press, New York. p. 259 (1992).

    Google Scholar 

  37. Scalbert A.; Duval L.; Peng S.; Monties B.; du Penhoat C. Polyphenols of Quercus robur L. II. Preparative isolation by low-pressure and high-pressure liquid chromatography of heartwood ellagitannins. J. Chromatogr. 502:107 (1990).

    Article  CAS  Google Scholar 

  38. Fernandes J.B.; Griffiths D.W.; Bain H. The evaluation of capillary zone electrophoresis and micellar electrokinetic capillary Chromatographic techniques for the simultaneous determination of flavonoids, cinnamic acids and phenolic acids in Black currant (Ribes nigrum) bud extracts. Phytochem. Anal. 7:97 (1996).

    Article  CAS  Google Scholar 

  39. Nawwar M.A.M.; Marsouk M.S.; Nigge W.; Linsheid M. High-performance liquid chromatographic/electrospray ionization mass spectrometric screening for polyphenolic compounds of Epilobium hirsutum—the structure of the unique ellagitannin epilobamide-A. J. Mass Spectrom. 32:645 (1997).

    Article  CAS  Google Scholar 

  40. Gross G.G. Synthesis of β-glucogallin from UDP-glucose and gallic acid by an enzyme preparation from oak leaves. FEBS Letters. 148:67 (1982).

    Article  CAS  Google Scholar 

  41. Gross G.G.; Schmidt S.W.; Denzel K. β-Glucogallin-dependent acyltransferase from oak leaves. I. Partial purification and characterization. J. Plant Physiol. 126:173 (1986).

    Article  CAS  Google Scholar 

  42. Cammann J.; Denzel K.; Schilling G.; Gross G.G. Biosynthesis of gallotannins: β-glucogallin-dependent formation of 1,2,3,4,6-pentagalloylglucose by enzymatic galloylation of 1,2,3,6-tetragalloylglucose. Arch. Biochem. Biophys. 273:58 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. Neihaus J.U.; Gross G.G. A gallotannin degrading esterase from leaves of pedunculate oak. Phytochemistry. 45:1155 (1997).

    Google Scholar 

  44. Scalbert, A.; Monties, B.; Farve, J.-M. Polyphenols of Quercus robur: Adult tree and in vitro grown calli and shoots. Phytochemistry. 27:3483 (1988).

    Article  CAS  Google Scholar 

  45. Tanaka N.; Shimomura K.; Ishimaru K. Tannin production in callus cultures of Quercus acutissima. Phytochemistry. 40:1151 (1995).

    Article  CAS  Google Scholar 

  46. Ford, Y.-Y.; Ratcliffe, R.G.; Robins, R.R. In vivo NMR analysis of tropane alkaloid metabolism in transformed root and de-differentiated cultures of Datura stramonium. Phytochemistry. 43:115 (1996).

    Article  CAS  Google Scholar 

  47. Okuda T.; Yoshida T.; Hatano T. New methods of analyzing tannins. J. Nat. Prod. 52:1 (1989).

    Article  CAS  Google Scholar 

  48. Xu F.; Shin W.; Brown S.H.; Wahleithner J.A.; Sundaram U.M.; Solomon E.I. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit differences in redox potential, substrate specificity and stability. Biochim. Biophys. Acta. 1292:303 (1996).

    Article  PubMed  Google Scholar 

  49. Bligny R.; Gaillard J.; Douce R. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Effects of a copper deficiency. Biochem. J. 237:583 (1986).

    PubMed  CAS  Google Scholar 

  50. Driouich A.; Lainé, A.C.; Vian B.; Faye L. Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J. 2:13 (1992).

    Article  CAS  Google Scholar 

  51. Sterjiades, R.; Dean, J.F.D.; Eriksson, K.-E.L. Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol. 99:1162 (1992).

    Article  PubMed  CAS  Google Scholar 

  52. Sterjiades, R.; Dean, J.F.D.; Gamble, G.; Himmelsbach, D.S., Eriksson, K.-E.L. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures. Reactions with monolignols and lignin model compounds. Planta. 190:75 (1993).

    Article  CAS  Google Scholar 

  53. Zhentian L.; Jervis J.; Helm R.F. C-Glycosidic ellagitannins from white oak heartwood and callus tissues. Phytochemistry 51:751 (1999).

    Article  CAS  Google Scholar 

  54. Viriot, C.; Scalbert, A.; Herve du Penhoat, C.L.M.; Rolando, C.; Moutounet, M. Methylation, acetylation and gel permeation of hydrolysable tannins. J. Chromatogr. A. 662:77 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Helm, R.F., Zhentian, L., Ranatunga, T., Jervis, J., Elder, T. (1999). Toward Understanding Monomeric Ellagitannin Biosynthesis. In: Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J. (eds) Plant Polyphenols 2. Basic Life Sciences, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4139-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4139-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46218-4

  • Online ISBN: 978-1-4615-4139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics