Skip to main content

Glycosylation, Esterification, and Polymerization of Flavonoids and Hydroxycinnamates: Effects on Antioxidant Properties

  • Chapter
Plant Polyphenols 2

Part of the book series: Basic Life Sciences ((BLSC,volume 66))

Abstract

Dietary flavonoids and hydroxycinnamates are effective antioxidants that may affect health and are also important for food preservation. Of the flavonoids, quercetin is a common representative and is found in many plant foods, especially onions, apples, tea, and broccoli. Quercetin is glycosylated in most plants, and the position and the nature of substitution of the sugar are species specific. Catechins are a well-studied group of flavonoids found at high levels in tea. Hydroxycinnamates are also found at exceptionally high levels in many foods including coffee and cereal brans and include ferulic, sinapic, p-coumaric, and caffeic acids. These compounds are commonly ester-linked to sugars or organic acids. This chapter reviews the action of flavonoids and hydroxycinnamates in two antioxidant assays: direct scavenging of the ABTS radical in the aqueous phase1 and inhibition of iron/ascorbate-induced lipid peroxidation of phosphatidylcholine liposomes.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller N.; Rice-Evans C. Spectrophotometric determination of antioxidant activity. Redox. Rep. 2:161–171 (1996).

    CAS  Google Scholar 

  2. Williamson G.; Plumb G.W.; Uda Y.; Price K.R.; Rhodes M.J.C. Dietary quercetin glycosides: antioxidant activity and induction of the anticarcinogenic phase II marker enzyme quinone reductase in Hepalclc7 cells. Carcinogenesis 17:2385–2387 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B.; Kromhout, D. Intake on potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr. Cancer. 20:29 (1993).

    Article  Google Scholar 

  4. Hertog, M.G.L.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; Pekkarinen, M.; Simic, B.S.; Toshima, H.; Feskens, E.J.M.; Hollman, P.C.H.; Katan, M.B. Flavonoid intake and longterm risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med., 155:381–386 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. Hanasaki Y.; Ogawa S.; Fukui S. The correlation between active oxygen scavenging and antioxidant effects of flavonoids. Free Rad. Biol. Med. 16:845–850 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. Laughton M.J.; Halliwell B.; Evans P.J.; Hoult J.R. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Biochem. Pharmacol. 38:2859–2865 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. Wang, P.-E.; Zheng, R.-L. Inhibitions of autoxidation of linoleic acid by flavonoids in micelles. Chem. Phys. Lipids 63:37–40 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. Saija A.; Scalese M.; Lanza M.; Marzullo D.; Bonina F.; Castelli F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Rad. Biol. Med. 19:481–486 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. Chen Z.Y.; Chan P.T.; Ho K.Y.; Fung K.P.; Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem. Phys. Lipids 79:157–163 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Salah N.; Miller N.J.; Paganga G.; Tijburg L.; Bolwell G.P.; Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322:339–346 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Vinson J.A.; Dabbagh Y.A.; Serry M.M.; Jang J.H. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J. Agr. Food Chem. 43:2800–2802 (1995).

    Article  CAS  Google Scholar 

  12. Foti M.; Piattelli M.; Baratta M.T.; Ruberto G. Flavonoids, coumarins and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J. Agric. Food Chem. 44:497–501 (1996).

    Article  CAS  Google Scholar 

  13. Aruoma, O.I. Antioxidant methodology: in vivo and in vitro concepts. AOCS Press, Champaign, IL, (1997).

    Google Scholar 

  14. Cao G.; Sofic E.; Prior R.L. Antioxidant and pro-oxidant behaviour of flavonoids: structure-activity relationships. Free Radical Biol. Med. 22:749–760 (1997).

    Article  CAS  Google Scholar 

  15. Pannala A.; Rice-Evans C.A.; Halliwell B.; Singh S. Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem. Biophys. Res. Commun. 232:164–168 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. Hertog M.G.L.; Sweetman P.M.; Fehily A.M.; Elwood P.C.; Kromhout D. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly study. Am. J. Clin. Nutr. 65:1489–1494 (1997).

    PubMed  CAS  Google Scholar 

  17. Dorant E.; Van den Brandt P.A.; Goldbohm R.A.; Sturmans F. Consumption of onions and a reduced risk of stomach carcinoma. Gastroenterology 110:12–20 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. Knekt P.; Jarvinen R.; Seppanen R.; Heliovaara M.; Teppo L.; Pukkala E.; Aromaa A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol. 146:223–230 (1997).

    PubMed  CAS  Google Scholar 

  19. Rimm E.B.; Katan M.B.; Ascherio A.; Stampfer M.J.; Walter M.D.; Willett M.D. Relation between intake of flavonoids and risk of coronary heart disease in male health professionals. Ann. Intern. Med. 125:384–389 (1996).

    PubMed  CAS  Google Scholar 

  20. Mitscher L.A.; Jung M.; Shankel D.; Dou J.H.; Steele L.; Pillai S.P. Chemoprotection: A review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents. Med. Res. Rev. 17:327–365 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. Formica J.V.; Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 33:1061–1080 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. Das A.; Wang J.H.; Lien E.J. Carcinogenicity, mutagenicity and cancer preventing activities of flavonoids: a structure-system-activity relationship (SSAR) analysis. Progress Drug Res. 42:166 (1994).

    Google Scholar 

  23. Zhu M.; Phillipson J.D.; Greengrass P.M.; Bowery N.E.; Cai Y. Plant polyphenols: Biologically active compounds or non-selective binders to protein? Phytochemistry 44:441–447 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. Brown J.; Khodr H.; Hider R.C.; Rice-Evans C. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J. 330:1173–1178 (1998).

    PubMed  CAS  Google Scholar 

  25. Yokozawa T.; Dong E.; Liu Z.W.; Shimizu M. Antioxidative activity of flavones and flavonols in vitro. Phytother. Res. 11:446–449 (1997).

    Article  CAS  Google Scholar 

  26. Cook N.C.; Samman S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7:66–76 (1996).

    Article  CAS  Google Scholar 

  27. Rice-Evans C.A.; Miller N.J.; Bolwell P.G.; Bramley P.M.; Pridham J.B. The relativeantioxidant activities of plant-derived polyphenolic flavonoids. Free Rad. Res. 22:375–383 (1995).

    Article  CAS  Google Scholar 

  28. Rice-Evans C.A.; Miller N.J.; Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med. 20:933–956 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. Musonda C.A.; Helsby N.; Chipman J.K. Effects of quercetin on drug metabolizing enzymes and oxidation of 2′,7-dichlorofluorescin in HepG2 cells. Hum. Exp. Toxicol. 16:700–708 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. Agullo G.; Gamet-Payrastre L.; Manenti S.; Viala C.; Remesy C.; Chap H.; Payrastre B. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition. Biochem. Pharmacol. 53:1649–1657 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. Cos P.; Ying L.; Calomme M.; Hu J.P.; Cimanga K.; Van Poel, B.; Pieters L.; Vlietinck A.J.; Van den Berghe D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and Superoxide scavengers. J Nat. Prod. 61:71–76 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. Walle T.; Eaton E.A.; Walle U.K. Quercetin, a potent and specific inhibitor of the human p-form phenolsulfotransferase. Biochem. Pharmacol. 50:731–734 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. Sato M.; Miyazaki T.; Kambe F.; Maeda K.; Seo H. Quercetin, a bioflavonoid, inhibits the induction of interleukin 8 and monocyte chemoattractant protein-1 expression by tumor necrosis factor-alpha in cultured human synovial cells. J. Rheumatol. 24:1680–1684 (1997).

    PubMed  CAS  Google Scholar 

  34. Dong Z.G.; Ma W.Y.; Huang C.S.; Yang C.S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (−)-epigallocatechin gallate, and theaflavins. Cancer Res. 57:4414–4419 (1997).

    PubMed  CAS  Google Scholar 

  35. Hayek T.; Fuhrman B.; Vaya J.; Rosenblat M.; Belinky P.; Coleman R.; Elis A.; Aviram M. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler. Thromb. Vasc. Biol. 17:2744–2752 (1997).

    Article  CAS  Google Scholar 

  36. Manach C.; Morand C.; Crespy V.; Demigne C.; Texier O.; Regerat F.; Remesy C. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS lett. 426:331–336 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. Miller N.J.; Diplock A.T.; Rice-Evans C.A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice oil storage. J. Agr. Food Chem. 43:1794–1801 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Williamson, G., Plumb, G.W., Garcia-Conesa, M.T. (1999). Glycosylation, Esterification, and Polymerization of Flavonoids and Hydroxycinnamates: Effects on Antioxidant Properties. In: Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J. (eds) Plant Polyphenols 2. Basic Life Sciences, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4139-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4139-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46218-4

  • Online ISBN: 978-1-4615-4139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics