Skip to main content

Birdsfoot Trefoil: A Model for Studying the Synthesis of Condensed Tannins

  • Chapter

Part of the book series: Basic Life Sciences ((BLSC,volume 66))

Abstract

Forage legumes are essential components in the diet of cattle and sheep unless they are fed with rendered animal proteins, which may have consequent serious problems for animal and human health. The most cultivated forage species are lucerne and clovers. However, the large amounts of proteins available from these species are poorly exploited, since they are degraded extensively both by plant proteases and rumen microorganisms where N may be lost through NH3 formation. These degradative phenomena are the basis of a range of different and serious agricultural problems: 1) bloating with consequent risks for the health and the life of animals;1 2) loss of nutritive value and reduced growth of the animals;2 3) pollution of the environment; in fact, excreted ammonia-rich manure is a pollution factor that alters ecological equilibrium and the environment.3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark R.T.J.; Reid C.S.W. Foamy bloat of cattle. A review. Journal of Dairy Sci. 57:753–785 (1974).

    Article  Google Scholar 

  2. Barry T.N.; Manley T.T. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 2._Quantitative digestion of carbohydrates and proteins. British J. of Nutr. 51:493–504 (1984).

    Article  CAS  Google Scholar 

  3. Jarvis, S.C. The pollution potential and flows of nitrogen to waters and the atmosphere from grassland under grazing. In: Dewi, I.A.; Axford, R.F.E.; Marai, I.F.M.; Omed, H.M. (eds.) Pollution in livestock production systems. CAB International, Wallingford pp. 227–239 (1994).

    Google Scholar 

  4. Lees, G.L. Condensed tannins in some forage legumes: their role in the prevention of ruminant pasture bloat. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols: synthesis, properties, significance. Plenum Press, New York, pp. 915–934 (1992).

    Google Scholar 

  5. Jones W.T.; Lyttleton J.W. Bloat in cattle. XXXIV. A survey of forage legumes that do not produce bloat. NZ J. Agric. Res. 13:149–156 (1971).

    Article  Google Scholar 

  6. Tanner, G.J.; Moate, P.; Dailey, L.; Laby, R.; Larkin P.J. Proanthocyanidins (condensed tannins) destabilise plant protein foams in a dose dependent manner. Aust. J. Agric. Res. 46:1101–1109 (1995).

    Article  CAS  Google Scholar 

  7. Kumar R.; Singh M. Tannins, their adverse role in ruminant nutrition. J. Agric. Food Chemistry 32:447–453 (1984).

    Article  CAS  Google Scholar 

  8. Sommer H.; Saedler H. Structure of the chalcone synthase gene in of Antirrhinum majus. Mol. Gen. Genet. 202:429–434 (1986).

    Article  CAS  Google Scholar 

  9. Koes R.E.; Spelt C.E.; van den Elzen P.J.M.; Mol J.N.M. Cloning and molecular characterization of the chalcone synthase multigene family of petunia. Gene 81:245–257 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. Wienenad U.; Weydemann U.; Niesbach-Kloesgen U.; Peterson P.A.; Saedler H. Molecular cloning of C2 locus of Zea mays, the gene coding for chalcone synthase. Mol. Gen. Genet. 203:202–207 (1986).

    Article  Google Scholar 

  11. Sparvoli F.; Martin C.; Scienza A.; Gavazzi G.; Tonelli C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.) Plant Mol. Biol. 24:743–755 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. van der Meer, I.M.; Stuitje, A.R.; Mol, J.N.M. Regulation of general phenyl-propanoid and flavonoid gene expression. In: Verma, D.P.S. (ed.) Control of plant gene expression, CRC Press, Boca Raton, FL, pp. 125–155 (1993).

    Google Scholar 

  13. Tanner G.J.; Kristiansen K.N. Synthesis of 3,4-cis-leucocyanidin and enzymatic reduction to catechin. Anal. Biochem. 209:274–277 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. Gruber, M.Y.; Skadhauge, B.; Stougaard, J. Condensed tannin mutation in Lotus japonicus. Polyphenols Actualites. Lettre d’information du Groupe polyphénols. Février 1998, pp. 4-8 (1998).

    Google Scholar 

  15. Carron T.R.; Robbins M.P.; Morris P. Genetic modifications of condensed tannin biosynthesis in Lotus corniculatus. 1._Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in “hairy roots” cultures. Theor. Appl. Genet. 87:1006–1015 (1994).

    Article  CAS  Google Scholar 

  16. Colliver S.P.; Morris P.; Robbins M.P. Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus. Plant Mol. Biol. 35:509–522 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Bavage A.D.; Davies I.G.; Robbins M.P.; Morris P. Expression of an Antirrhinum dihydroflavanol reductase gene results in changes in condensed tannin structure and accumulation in root cultures of Lotus corniculatus. Plant Mol. Biol. 35:443–458 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Damiani F.; Paolocci F.; Cluster P.D.; Arcioni S.; Tanner G.J.; Joseph R.G.; Li Y.G.; deMajnik J.; Larkin P.J. The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants. Aust. J. of Plant Physiol. 26:159–169 (1999).

    Article  CAS  Google Scholar 

  19. Tonelli C.; Consonni G.; Dolfini S.F.; Dellaporta S.L.; Viotti A.; Gavazzi G. Genetic and molecular analysis of Sn, a light-inducible tissue-specific regulatory gene in maize. Mol. Gen. Genet. 225:401–410 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. Damiani F.; Paolocci F.; Consonni G.; Crea F.; Tonelli C.; Arcioni S. A maize anthocyanin transactivator induces pigmentation in several transgenic dycotiledonous species. Plant Cell Report 17:339–344 (1998).

    Article  CAS  Google Scholar 

  21. Jefferson R.A.; Kavanagh T.A.; Bevan M.W. Gus fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907 (1987).

    PubMed  CAS  Google Scholar 

  22. Robbins, M.P.; Carron, T.R.; Morris, P. Transgenic Lotus corniculatus: a model system for modification and genetic manipulation of condensed tannin biosynthesis. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols: synthesis, properties, significance. Plenum Press, New York, pp. 111–131 (1992).

    Google Scholar 

  23. Damiani F.; Nenz E.; Paolocci F.; Arcioni S. Introduction of hygromycin resistance in Lotus spp. through Agrobacterium rhizogenes transformation. Transgenic Research 2:330–335 (1993).

    Article  CAS  Google Scholar 

  24. Lloyd, A.M.; Walbot, W.; Davis, R.W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1._Science 258:1773–1775 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. Larkin J.C.; Oppenheimer D.G.; Lloyd A.M.; Paparozzi E.T.; Marks M.D. Roles of the GLABROUS1 and TRANSPARENT TESTA genes in Arabidopsis trichome development. Plant Cell 6:1065–1076 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. Li Y.G.; Tanner G.J.; Larkin P.J. The DMACA-HC1 protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 70:89–101 (1996).

    Article  CAS  Google Scholar 

  27. Pupilli F.; Damiani F.; Nenz E.; Arcioni S. In vitro propagation of Medicago and Lotus species by node culture. In vitro Cell. and Dev. Biol. 28:167–171 (1992).

    Google Scholar 

  28. Bellucci M.; Alpini A.; Paolocci F.; Damiani F.; Arcioni S. Transcription of a maize cDNA in Lotus corniculatus is regulated by T-DNA methylation and transgene copy number. Theor. Appl. Genet. 98:257–264 (1999).

    Article  CAS  Google Scholar 

  29. Chang S.; Puryear J.; Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113–116 (1993).

    Article  CAS  Google Scholar 

  30. Rosati C.; Cadic A.; Duron M.; Renou J.P.; Simoneau P. Molecular cloning and expression analysis of dihydroflavanol 4-reductase gene in flower organs of Forsytia x intermedia. Plant Mol. Biol. 35:303–311 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. Metzlaff M.; O’Dell M.; Cluster P.D.; Flavell R.B. RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 88:845–854 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. Robbins M.P.; Bavage A.D.; Strudwicke C.; Morris P. Genetic manipulation of condensed tannins in higher plants. II analysis of Lotus corniculatus plants harboring antisense dihydroflavonol reductase constructs. Plant Physiol. 116:1133–1144 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. Colonna-Romano, S.; Leone, A.; Maresca, B. Differential-display reverse transcription PCR (DDRT-PCR). Springer-Verlag (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Paolocci, F., Capucci, R., Arcioni, S., Damiani, F. (1999). Birdsfoot Trefoil: A Model for Studying the Synthesis of Condensed Tannins. In: Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J. (eds) Plant Polyphenols 2. Basic Life Sciences, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4139-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4139-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46218-4

  • Online ISBN: 978-1-4615-4139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics