Skip to main content

Genetic Systems for Condensed Tannin Biotechnology

  • Chapter
Plant Polyphenols 2

Abstract

Condensed tannins (proanthocyanidins) are plant phenolic polymers with protein-binding, carbohydrate-binding, and antioxidant properties. Dietary condensed tannins deter some insects from feeding on crops, disrupt insect digestion and growth,1 and deter larger browsing and foraging animals.2 As well, the very high levels of condensed tannins found in tropical plant species likely protect these plants from the damaging effects of strong sunlight. Patterns of expression of condensed tannins vary widely within tissues and among plant species, but could be substantially improved in some plant species to suit agricultural and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manuwoto S.; Scriber J.M. Effects of hydrolyzable and condensed tannin on growth and development of two species of polyphagous lepidoptera: Spodoptera eridania and Callosamia promethea. Oecologia (Berlin) 69:225 (1986).

    Article  Google Scholar 

  2. Furstenburg, D.; van Hoven, W. Condensed tannin as anti-defoliate agent against browsing by giraffe (Giraffa camelopardalis) in the Kruger National Park. Comp. Biochem. Physiol. 107A:425 (1994).

    Article  CAS  Google Scholar 

  3. Howarth, R.E.; Chaplin, R.K.; Cheng, K.-J.; Goplen, B.P.; Hall, J.W.; Hironaka, R.; Majak, W.; Radostits, O.M. Bloat in cattle. Agriculture Canada Publication 1858/E. Communications Branch. Agriculture and Agri-Food Canada, Ottawa (1991).

    Google Scholar 

  4. Tanner G.J.; Moate P.; Dailey L.; Laby R.; Larkin P.J. Proanthocyanidins (condensed tannins) destabilise plant protein foams in a dose dependent manner. Aust. J. Agric. Res. 46:101 (1995).

    Article  Google Scholar 

  5. Jones, G.A.; McAllister, T.A.; Muir, A.D.; Cheng, K.-D. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminai bacteria. Appl. Environ. Microbiol. 60:1374 (1994).

    PubMed  CAS  Google Scholar 

  6. Tanner G.J.; Moore A.E.; Larkin P.J. Proanthocyanidins inhibit hydrolysis of leaf proteins by rumen microflora in vitro. Brit. J. Nutr. 71:47 (1994).

    Google Scholar 

  7. Min B.R.; Barry T.N.; McNabb W.C.; Kamp P.D. Effect of condensed tannins on the production of wool and on its processing characteristics in sheep grazing Lotus corniculatus. Aust. J. Agric. Res. 49:597 (1998).

    Article  CAS  Google Scholar 

  8. Niezen K.E.; Waghorn T.S.; Charleston W.A.G.; Waghorn G.C. Growth and gastrointestinal nematode parasitism in lambs grazing either lucerne (Medicago sativa) or sulla (Hedysarum coronarium) which contains condensed tannins. J. Agric. Sci. (Cambridge) 125:81 (1995).

    Article  Google Scholar 

  9. Newman R.K.; Newman C.W.; El-Negoumy A.M.; Aastrup S. Nutritive quality of proanthocyanidin-free barley. Nutrition Reports Int’l. 30:809 (1984).

    CAS  Google Scholar 

  10. Erdal K. Proanthocyanidin-free barley. J. Inst. Brewing 92:220 (1986).

    CAS  Google Scholar 

  11. Von Wettstein, D.; Jende-Strid B.; Ahrenst-Larsen B.; Sørensen, J.A. Biochemical mutant in bartley renders chemical stabilization of beer superfluous. Carlsberg Res. Commun. 42:341 (1979).

    Article  Google Scholar 

  12. Porter, L.J. Flavans and proanthocyanidins. In: Harborne, J.B. (ed.) The flavonoids. advances in research since 1980. Chapman and Hall, New York. pp. 21 (1988).

    Google Scholar 

  13. Butler L.G. Relative degree of polymerization of sorghum tannin during seed development and maturation. J. Agric. Food Chem. 30:090 (1982).

    Google Scholar 

  14. Reddy V.S.; Dash S.; Reddy A.R. Anthocyanin pathway in rice (Orza sativa L.): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp. Theor. Appl. Genet. 91:301 (1995).

    Article  CAS  Google Scholar 

  15. Goplen, B.P.; Howarth, R.E.; Sarkar, S.K.; Lesins. K. A search for condensed tannins in annual and perennial species of Medicago, Trigonella, and Onobrychis. Crop Sci. 20:801 (1980).

    Article  CAS  Google Scholar 

  16. Stafford, H. Flavonoid metabolism. CRC Press, Boca Raton, FL (1990).

    Google Scholar 

  17. Dooner H.K.; Robbins T.P. Genetic and developmental control of anthocyanin biosynthesis. Ann. Rev. Genet. 25:173 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. Martin C.; Prescott A.; Mackay S.; Bartlett J.; Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1:37 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. Holton T.A.; Cornish E.C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. Shirley B.W.; Kubaske W.L.; Storz G.; Bruggemann E.; Koornneef M.; Ausubel F.M.; Goodman H.M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8:65 (1996).

    Google Scholar 

  21. Mol. J.; Grotewold E.; Does R. How genes paint flowers and seeds. Trends in Plant Sci. 3:212 (1998).

    Article  Google Scholar 

  22. Jende-Strid B. Genetic control of flavonoid biosynthesis in barley. Hereditas 119:187 (1993).

    Article  CAS  Google Scholar 

  23. Koorneef M. Mutations affecting the testa colour in Arabidopsis. Arabia. Inf. Service 27:1 (1990).

    Google Scholar 

  24. Reuber S.; Jende-Strid B.; Wray V.; Weissenbock G. Accumulation of the chalcone isosalipurposide in primary leaves of barley flavonoid mutants indicates a defective chalcone isomerase. Physiol. Plant. 101:827 (1997).

    Article  CAS  Google Scholar 

  25. Skadhauge B.; Gruber M.Y.; Thomsen K.K.; von Wettstein D. Leucocyanidin reductase activity and accumulation of proanthocyanidins in developing legume tissue. Am. J. Botany 84:494 (1997).

    Article  CAS  Google Scholar 

  26. 26._Tanner, G.J.; Kristiansen, K.N.; Jende-Strid, B. Biosynthesis of proanthocyanidins (condensed tannins) in barley. Proc. XVI Int. Conf. Groupe Polyphenols, Portugal (1992).

    Google Scholar 

  27. Tanner G.J.; Kristiansen K.N. Synthesis of 3H-3,4-cis-leucocyanidin and enzymatic reduction to catechin. Anal. Biochem. 209:274 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. Joseph R.; Tanner G.; Larkin P. Proanthocyanidin synthesis in the forage legume Onobrychis viciifolia. A study of chalcone synthase, dihydroflavonol 4-reductase and leucoanthocyanidin 4-reductase in developing leaves. Aust. J. Plant Physiol. 25:27 (1998).

    Article  Google Scholar 

  29. Singh S.; McCallum J.; Gruber M.Y.; Towers G.H.N.; Muir A.D.; Bohm B.A.; Koupai-Abazani M.R.; Glass A.D.M. Biosynthesis of flavan-3-ols by leaf extracts of Onobrychis viciifolia. Phytochemistry 44:425 (1997).

    Article  CAS  Google Scholar 

  30. Koupai-Abyazani M.R.; McCallum J.; Muir A.D.; Lees G.L.; Bohm B.A.; Towers G.H.N.; Gruber M.Y. Purification and characterization of a proanthocyanidin polymer from seed of alfalfa (Medicago sativa cv. Beaver). J. Agric. Food Chem. 41:565 (1993).

    Article  CAS  Google Scholar 

  31. Koupai-Abyazani M.R.; McCallum J.; Muir A.D.; Böhm, B.A.; Towers G.H.N.; Gruber M.Y. Developmental changes in the composition of proanthocyanidins from leaves of sainfoin (Onobrychis viciifolia Scop.) as determined by HPLC analysis. J. Agr. Food Chem. 41:1066 (1993).

    Article  CAS  Google Scholar 

  32. Lees G.L.; Suttill N.H.; Gruber M.Y. Condensed tannins in sainfoin. 1._A histological and cytological survey of plant tissues. Can. J. Bot. 71:1147 (1993).

    Article  CAS  Google Scholar 

  33. Stafford H.A.; Smith E.C.; Weider R.M. The development of proanthocyanidins (condensed tannins) and other phenolics in bark of Pseudotsuga menziessii. Can. J. Bot. 67:1111 (1989).

    CAS  Google Scholar 

  34. Brandon, M.J.; Foo, L.Y.; Porter, L.J.; Meredith X. Proanthocyanidins of barley and sorghum: composition as a function of maturity of barley ears. Phytochemistry 21:2953 (1982).

    Article  CAS  Google Scholar 

  35. Kristiansen K.N. Biosynthesis of proanthocyanidins in barley: Genetic control of the conversion of dihydroquercetin to catechin and procyanidins. Carlsberg Res. Commun. 49:503 (1984).

    Article  CAS  Google Scholar 

  36. Skadhauge B.; Thomsen K.K.; von Wettstein D. The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147 (1997).

    Article  CAS  Google Scholar 

  37. Skadhauge, B. Genetics and biochemistry of proanthocyanidin biosynthesis and their biological significance in crop plants. PhD Thesis. The Royal Veterinary and Agriculture University, Copenhagen, Denmark (1996).

    Google Scholar 

  38. Delcour J.A.; Ferreira D.; Roux D.G. Synthesis of condensed tannins. Part 9._The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. J. Chem. Soc., Perkin Trans. 1:1711 (1983).

    Article  Google Scholar 

  39. Parham R.A.; Kaustinen H.M. Differential staining of tannin in sections of epoxyembedded plant cells. Stain Technol. 51:237 (1976).

    PubMed  CAS  Google Scholar 

  40. Parham R.A.; Kaustinen H.M. On the site of tannin synthesis in plant cells. Bot. Gaz. 138:465 (1983).

    Article  Google Scholar 

  41. Rao K.S. Fine structural details of tannin accumulations in nondividing cambial cells. Ann. Bot. 62:575 (1988).

    Google Scholar 

  42. Lees G.L.; Gruber M.Y.; Suttill N.H. Condensed tannins in sainfoin. 2._Occurrence and changes during leaf development. Can. J. Bot. 73:1540 (1995).

    Article  CAS  Google Scholar 

  43. Lees, G.L. Condensed tannins in some forage legumes: their role in the prevention of ruminant pasture bloat. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols: synthesis, properties, significance. Plenum Press, New York, pp 914 (1992).

    Google Scholar 

  44. Lees G.L.; Hinks C.F.; Suttill N.H. Effect of high temperature on condensed tannin accumulation in leaf tissues of big trefoil (Lotus uliginosis Schkuhr). J. Sci. Food Agric. 65:415 (1994).

    Article  CAS  Google Scholar 

  45. Barry T.N.; Forss D.A. The condensed tannin content of vegetative Lotus pedunculatus, its regulation by fertilizer application, and effect upon protein solubility. J. Sci. Food Agric. 34:1047 (1983).

    Article  CAS  Google Scholar 

  46. Jende-Strid B.; Møller, B.L. Analysis of proanthocyanidins in wild type and mutant barley (Hordeum vulgare L.). Carlsberg Res. Commun. 46:53 (1981).

    Article  CAS  Google Scholar 

  47. Meldgaard M. Expression of chalcone synthase, dihydroflavonol reductase and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor. Appl. Genet. 83:695 (1992).

    Article  CAS  Google Scholar 

  48. Hubank M.; Schatz D.F. Identifying differences in the mRNA expression by representation difference analysis of cDNA. Nucl. Acids Res. 22:5640 (1994).

    Article  PubMed  CAS  Google Scholar 

  49. Olson O.; Wang X.; von Wettstein D. Sodium azide mutagenesis: Preferential generation of A:T-G:C transitions in the barley Ant 18 gene. Proc. Nat’l. Acad. Sci. USA 90:8043 (1993).

    Article  Google Scholar 

  50. Wang X.; Olsen O.; Knudsen S. Expression of the dihydroflavonol reductase gene in an anthocyanin-free barley mutant. Hereditas 119:67 (1993).

    Article  PubMed  CAS  Google Scholar 

  51. Gierl A.; Saedler H. Plant-transposable elements and gene tagging. Plant Mol. Biol. 19:39 (1992).

    Article  PubMed  CAS  Google Scholar 

  52. Jones D.G.; Jones D.; Bishop G.J.; Harrison K.; Carroll B.J.; Scofield S.R. Use of the maize transposon Activator and Dissociation to show phosphinothricin and spectinomycin resistance genes act non-cell-autonomously in tobacco and tomato seedlings. Transgen. Res. 2:63 (1993).

    Article  Google Scholar 

  53. Thykjaer T.; Stiller J.; Handberg K.; Jones J.; Stougaard J. The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Mol. Biol. 27:981 (1995).

    Article  PubMed  CAS  Google Scholar 

  54. Watterson J.J.; Butler L.G. Occurrence of an unusual leucoanthocyanidin and absence of proanthocyanidins in Sorghum leaves. J. Agric. Food Chem. 31:41 (1983).

    Article  CAS  Google Scholar 

  55. Lloyd, A.M.; Walbot, V.; Davis, R.W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773 (1992).

    Article  PubMed  CAS  Google Scholar 

  56. Kilby N.J.; Leyser H.M.O.; Furner I.J. Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol. Biol. 20:103 (1992).

    Article  PubMed  CAS  Google Scholar 

  57. Scheid M.O.; Paszkowski J.; Potrykus I. Reversible inactivation of a transgene in Arabidopsis thaliana. Mol. Gen. Genet. 228:104 (1991).

    Article  Google Scholar 

  58. Dehio C., Schell J. Identification of plant genetic loci involved in a posttranscriptional mechanism for meitoically reversible transgene silencing. Proc. Nat’l. Acad. Sci. (USA) 91:5538 (1994).

    Article  CAS  Google Scholar 

  59. Morris P.; Robbins M.P. Condensed tannin formation by Agrobacterium rhizogenes transformed root and shoot organ cultures of Lotus corniculatus. J. Exp. Bot. 43:221 (1992).

    Article  CAS  Google Scholar 

  60. Carron T.R.; Robbins M.P.; Morris P. Genetic modification of condensed tannin biosynthesis in Lotus corniculatus. 1._Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in “hairy root” cultures. Theor. Appl. Genet. 87:1006 (1994).

    Article  CAS  Google Scholar 

  61. Robbins M.P.; Bavage A.D.; Strudwicke C.; Morris P. Genetic manipulation of condensed tannins in higher plants. II. Analysis of birdsfoot trefoil plants harboring antisense dihydroflavonol reductase constructs. Plant Physiol. 116:1133 (1997).

    Article  Google Scholar 

  62. Bavage A.D.; Davies L.G.; Robbins M.P.; Morris P. Expression of an Antirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures of Lotus corniculatus (birdsfoot trefoil). Plant Mol. Biol. 35:443 (1997).

    Article  PubMed  CAS  Google Scholar 

  63. Colliver S.P.; Morris P.; Robbins M.P. Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus. Plant Mol. Biol. 35:509 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. van der Krol A.R.; Lenting P.E.; Veenstra J.; van der Meer I.M.; Koes R.E.; Gerats A.G.M.; Mol J.N.M.; Stuitje A.R. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866 (1988).

    Article  Google Scholar 

  65. Datla R.S.S.; Bekkaoui F.; Hammerlindo J.K.; Pilate G.; Dunstan D.I.; Crosby W.L. Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci. 94:139 (1993).

    Article  CAS  Google Scholar 

  66. van der Meer I.M.; Stam M.E.; van Tunen A.J.; Mol J.N.M.; Stuitje A.R. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253 (1992).

    Article  PubMed  Google Scholar 

  67. Que Q.D.; Wang H.Y.; English J.J.; Jorgensen R.A. The frequency and degree of cosup-pression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9:1357 (1997).

    Article  PubMed  CAS  Google Scholar 

  68. Todd J.J.; Vodkin L.O. Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 8:687 (1996).

    Article  PubMed  CAS  Google Scholar 

  69. van der Meer, I.M.; Stuitje, A.R.; Mol, J.N.M. Regulation of general phenyl-propanoid and flavonoid gene expression. In: Verma, D.P.S. (ed.) Control of plant gene expression. CRC Press, Boca Raton, FL pp. 125 (1993).

    Google Scholar 

  70. Mol J.; Jenkins G.,; Schafer E.; Weiss D. Signal perception, transduction, and gene expression involved with anthocyanin biosynthesis. Critical Rev. Plant Sci. 15:525 (1996).

    CAS  Google Scholar 

  71. Styles E.D.; Ceska O. The genetic control of flavonoid synthesis in maize. Can. J. Genet. Cytol. 19:289 (1997).

    Google Scholar 

  72. Cone, K.C.; Burr, F.A.; Burr, B. Molecular analysis of the maize anthocyanin regulatory locus C1._Proc. Nat’l. Acad. Sci. (USA) 83:9631 (1986).

    Article  CAS  Google Scholar 

  73. Paz-Arez J.; Ghosal D.; Weinard U.; Peterson P.; Saedler H. The regulatory C1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 6:3553 (1987).

    Google Scholar 

  74. Cone K.C.; Coccioloni S.M.; Burr F.A.; Burr B. Maize anthocyanin regulatory gene pl is a duplicate of cl that functions in the plant. Plant Cell 5:1795 (1993).

    Article  PubMed  CAS  Google Scholar 

  75. Cone K.C.; Cocciolone S.M.; Moehlenkamp C.A.; Weber T.; Drummond B.J.; Tagliani L.A.; Bowen B.A.; Perrot G.H. Role of the regulatory gene Pl in the photocontrol of maize and anthocyanin pigmentation. Plant Cell 5:1807 (1993).

    Article  PubMed  CAS  Google Scholar 

  76. Quattrocchio F.; Wing J.F.; Leppen H.T.C.; Mol J.N.M.; Koes R.E. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497 (1993).

    Article  PubMed  CAS  Google Scholar 

  77. Quattrocchio R.; Wing J.F.; van der Woude K.; Mol J.N.M.; Koes R. Analysis of bHLH and myb domain proteins: species specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J. 13:475 (1998).

    Article  PubMed  CAS  Google Scholar 

  78. Chuck G.; Robbins T.; Nijjar C.; Ralston E.; Courtney-Gutterson N.; Dooner H.K. Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5:371 (1993).

    Article  PubMed  CAS  Google Scholar 

  79. Avila J.; Nietao C.; Canas L.; Benito J.M.; Paz-Ares J. Petunia hybrida genes related to the maize regulatory C1 and to animal myb proto-oncogenes. Plant J. 3:553 (1993).

    Article  PubMed  CAS  Google Scholar 

  80. Moyano E.; Martinez-Garcia M.F.; Martin C. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell 8:1519 (1996).

    Article  PubMed  CAS  Google Scholar 

  81. Goff S.A.; Cone K.C.; Fromm M.E. Identification of functional domains in the maize transcriptional activator C1: comparison of wildtype and dominant inhibitor proteins. Genes and Development 5:298 (1991).

    Article  PubMed  CAS  Google Scholar 

  82. Goff S.A.; Cone K.C.; Chandler V.L. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes and Development 6:864 (1992).

    Article  PubMed  CAS  Google Scholar 

  83. Chandler V.L.; Radicella J.P.; Robbins T.P.; Chen. J.; Turks D. Two regulatory genes of the maize anthocyanin pathway are homologous: Isolation of the B utilizing R genomic sequences. Plant Cell 1:1175 (1989).

    Article  PubMed  CAS  Google Scholar 

  84. Consonni G.; Geuna F.; Gavazzi G.; Tonelli C. Molecular homology among members of the R gene family in maize. Plant J. 3:335 (1993).

    Article  PubMed  CAS  Google Scholar 

  85. Gerats A.G.; Bussard J.; Coe E.H.Fr.; Larson R. Influence of B and R on UDPG:flavonoid-3-0-glucosyltransferase in Zea mays. L. Biochem. Genet. 22:1161 (1984).

    Article  CAS  Google Scholar 

  86. Tonelli C.; Consonni G.; Donfini S.F.; Dellaporta S.L.; Viotti A.; Gavazzi G. Genetic and molecular analysis of Sn, a light-inducible tissue specific regulatory gene in maize. Mol. Gen. Genet. 225:401 (1991).

    Article  PubMed  CAS  Google Scholar 

  87. Gavazzi G.; Mereghetti M.; Consonni G.; Tonelli C. Sn, a light-dependent and tissue specific gene of maize: the genetic basis of its instability. Genetics 125:193 (1990).

    PubMed  CAS  Google Scholar 

  88. Ludwig, S.R.; Habera, L.F.; Dellaporta, S.L.; Wessler, S.R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production encodes a protein similar to anthocyanin transcriptional activators and contains the myc-homology region. Proc. Nat’l. Acad. Sci. (USA) 86:7092 (1989).

    Article  CAS  Google Scholar 

  89. Grotewold E.; Drummond B.J.; Bowen B.; Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid gene subset. Cell 76:543 (1994).

    Article  PubMed  CAS  Google Scholar 

  90. Styles E.D.; Ceska O. The genetic control of flavonoid synthesis in maize. Can. J. Genet. & Cytol. 19:289 (1977).

    CAS  Google Scholar 

  91. Goodrich J.; Carpenter R.; Coen E.S. A common gene regulates pigmentation pattern in diverse plant species. Cell 68:955 (1992).

    Article  PubMed  CAS  Google Scholar 

  92. Quattrocchio, F.M. Regulatory genes controlling flower pigmentation in Petunia hybrida. PhD Dissertation. Vrije Universiteit, Amsterdam, The Netherlands (1994).

    Google Scholar 

  93. Mooney M.; Desnos T.; Harrison K.; Jones J.; Carpenter R.; Coen E. Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant J. 7:333 (1995).

    Article  CAS  Google Scholar 

  94. Wong, J.R.; Walker, L.S.; Drikeilis, H.; Klein, T.M. Anthocyanin regulatory genes from maize B-Peru and C1 activate the anthocyanin pathway in wheat, barley and oat cells. J. Cell Biochem. Suppl. 0 (15 part A):159 (1991).

    CAS  Google Scholar 

  95. Bradley J.M.; Davies K.M.; Deroles S.C.; Bloor S.J.; Lewis D.H. The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of petunia. Plant J. 13:381 (1998).

    Article  CAS  Google Scholar 

  96. Tamagnone L.; Merida A.; Parr A.; Mackay S.; Culliznez-Macia F.A.; Roberta K.; Martin C. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135 (1998).

    Article  PubMed  CAS  Google Scholar 

  97. Sablowski R.W.M.; Moyano E.; Cullianezmacia F.A.; Schuch W.; Martin C.; Beven M. A flower-specific MYB protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J. 13:128 (1994).

    PubMed  CAS  Google Scholar 

  98. Damiani F.; Paolocci F.; Consonni G.; Crea F.; Tonelli C.; Arcioni S. A maize anthocyanin transactivator induces pigmentation in hairy roots of dicotyledenous species. Plant Cell Rep. 17:339 (1998).

    Article  CAS  Google Scholar 

  99. Damiani F.; Paolocci F.; Cluster P.D.; Arcioni S.; Tanner G.J.; Joseph R.G.; Li Y.G.; deMajnik J.; Larkin P.J. The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants. Aust. J. Plant Phys. 26: in press (1999).

    Google Scholar 

  100. English, J.J.; Mueller, E.; Baulcombe, D.C. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179 (1996).

    Article  PubMed  CAS  Google Scholar 

  101. Dougherty W.; Lindbo Smith, H.; Parks T.; Swaney S.; Proebsting W. RNA-mediated virus resistance in transgenic plants: Exploitation of a cellular pathway involved in RNA degradation. Mol. Plant-Microbe Interact. 7:544 (1994).

    Article  PubMed  CAS  Google Scholar 

  102. de Majnik J.; Joseph R.G.; Tanner G.J.; Larkin P.J.; Dmordjevic M.A.; Rolfe B.G.; Weinman J.J. A convenient set of vectors for expression of multiple gene combinations in plants. Plant Mol. Biol. Rep. 15:134 (1997).

    Article  Google Scholar 

  103. de Majnik J.; Tanner G.J.; Joseph R.G.; Larkin P.J.; Weinman J.J.; Djordjevic M.A.; Rolfe B.G. Transient expression of maize anthocyanin regulatory genes influences anthocyanin production in white clover and peas. Aust. J. Plant Physiol. 25:335 (1998).

    Article  Google Scholar 

  104. Larkin, P.J.; Yuguang, L.; Tanner, G.J.; Banks, P.M. Using alien genes—translocations, transfusions and transgressions. In: Focused plant improvement. Towards responsible and sustainable Agriculture. Proc. Tenth Australian Plant Breeding Conference. Gold Coast, Australia (April) (1993).

    Google Scholar 

  105. Junghans H.; Dalkin K.; Dixon R.A. Stress responses in alfalfa (Medicago sativa L.). Part 15._Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol. Biol. 22:239 (1993).

    Article  PubMed  CAS  Google Scholar 

  106. Shirley B.W. Flavonoid synthesis: “new functions” for an “old pathway.” Trends in Plant Sci. 1:377 (1996).

    Google Scholar 

  107. Charrier B.; Coronado C.; Kondorosi A.; Ratet P. Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Mol. Biol. 29:773 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Gruber, M.Y. et al. (1999). Genetic Systems for Condensed Tannin Biotechnology. In: Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J. (eds) Plant Polyphenols 2. Basic Life Sciences, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4139-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4139-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46218-4

  • Online ISBN: 978-1-4615-4139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics