Nonsmooth Computational Mechanics

I. Modelling and Applications
  • Vladimir F. Dem’yanov
  • Georgios E. Stavroulakis
  • Ludmila N. Polyakova
  • Panagiotis D. Panagiotopoulos
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 10)


In this Chapter nonsmooth computational mechanics problems are formulated and studied by using the quasidifferentiable modelling techniques. Discrete variational inequality problems, hemivariational inequality problems and systems of variational inequalities are formulated based on the results of Chapters 3 and 4. All problems treated here are pilot applications which can be followed to develop nonsmooth modelling techniques for other branches in engineering.


Variational Inequality Yield Surface Variational Inequality Problem Potential Energy Function Hemivariational Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argyris J.H. (1966), Continua and discontinua. Proc. 1st Conf. Matrix Meth. Struct. MechWright Petterson Air Force Base, Dayton, Ohio 1965, AFFDL TR 66–80.Google Scholar
  2. 2.
    Auchmuty G. (1989), Duality algorithms for nonconvex variational principles. Num. Functional Analysis and Optimization, 10, 211–264.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bazant Z.P. and Cedolin L. (1991), Stability of structures. Elastic, inelastic, fracture and damage theories, Oxford University Press, New York, Oxford.zbMATHGoogle Scholar
  4. 4.
    Comi C., Maier G. and Perego U. (1992), Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables, Computer Method in Applied Mechanics and Engineering 96, 213–237.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Demyanov V.F. and Vasiliev L.N. (1985), Nondifferentiable Optimization, Optimization Software, New York.CrossRefzbMATHGoogle Scholar
  6. 6.
    Demyanov V.F and Rubinov A.M. (1995), Introduction to Constructive Nonsmooth Analysis, Peter Lang Verlag, Frankfurt a.M. — Bern — New York, 414 p.Google Scholar
  7. 7.
    Duvaut G. and Lions J.L. (1972), Les inequations en mechanique et en physique, Dunod, Paris.Google Scholar
  8. 8.
    Eve R.A., Reddy B.D. and Rockafellar R.T. (1990), An internal variable theory of plasticity based on the maximum plastic work inequality, Quarterly of Applied Mathematics 68 (1), 59–83.MathSciNetGoogle Scholar
  9. 9.
    Glowinski R., Lions J.-L. and Tremolieres R. (1981), Numerical analysis of variational inequalities, Studies in Mathematics and its Applications Vol. 8, North-Holland, Elsevier, Amsterdam, New York.CrossRefzbMATHGoogle Scholar
  10. 10.
    Glowinski R. and Le Tallec P. (1989), Augmented lagrangian and operator-splitting methods for nonlinear mechanics. Philadelphia, SIAM.Google Scholar
  11. 11.
    Green A.E. and Naghdi P.M. (1965), A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal., 18, 251–281.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hiriart-Urruty J.-B. (1985), Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In: Convexity and duality in optimization, Ed. J. Ponstein, 37–50, Lect. Notes in Economics and Mathematical Systems Vol. 256, Springer.Google Scholar
  13. 13.
    Hiriart-Urruty J.-B. and Lemarechal C. (1993), Convex analysis and minimization algorithms I, Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
  14. 14.
    Horst, R. and Tuy, H. (1990), Global Optimization, Springer Verlag, Berlin — Heidelberg.CrossRefzbMATHGoogle Scholar
  15. 15.
    Kim S.J. and Oden J.T. (1985), Generalized flow potentials in finite elastoplasticity. II. Examples. Int. J. Engng, Sci., 23 (5), 515–530.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    LeTallec P. (1990), Numerical analysis of viscoelastic problems, Masson, Paris and Springer Verlag, Berlin.Google Scholar
  17. 17.
    Lubliner L. (1990), Plasticity Theory, Macmillan Publ., New York and Collier Macmillan Publ., London.zbMATHGoogle Scholar
  18. 18.
    Malvern L.E. (1969), Introduction to the mechanics of a continuous medium, Prentice-Hall Inc., Englewood Cliffs, N.Jersey.Google Scholar
  19. 19.
    Martin J.B. and Caddemi S. (1994), Sufficient conditions for convergence of the Newton-Raphson iterative algorithms in incremental elastic-plastic analysis, European Journal of Mechanics, A/Solids, 13 (3), 351–365.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Moreau, J.J. (1968), La notion de sur-potentiel et les liaisons unilaterales en elasto-statique, C.R. Acad. Sc. Paris 267A, 954–957.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Nadai A. (1963), Theory of flow and fracture of solids. Vol. II, McGraw-Hill, New York.Google Scholar
  22. 22.
    Panagiotopoulos P.D. (1976), Convex analysis and unilateral static problems. Ing. Archiv, 45, 55–68.CrossRefzbMATHGoogle Scholar
  23. 23.
    Panagiotopoulos P.D. (1985), Inequality problems in mechanics and applications. Convex and nonconvex energy functions, Birkhauser Verlag, Basel — Boston — Stuttgart, (russian translation, MIR Publ., Moscow 1988 ).Google Scholar
  24. 24.
    Panagiotopoulos P.D. (1988), Nonconvex superpotentials and hemivariational inequalities. Quasidiferentiability in mechanics, in Moreau, J.J. and Panagiotopoulos, P.D. (eds.), Nonsmooth Mechanics and Applications, CISM Lect. Nr. 302, Springer Verlag, Wien — New York.Google Scholar
  25. 25.
    Panagiotopoulos P.D. and Stavroulakis G.E. (1992), New types of variational principles based on the notion of quasidifferentiability, Acta Mechanica 94, 171–194.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Panagiotopoulos P.D. (1993), Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer Verlag, Berlin — Heidelberg — New York.CrossRefzbMATHGoogle Scholar
  27. 27.
    Polyakova L.N. (1986), On minimizing the sum of a convex function and a concave function, Mathematical Programming Study 29, 69–73.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Reddy B.D. (1991), Algorithms for the solution of internal variable problems in plasticity. Computer Methods in Applied Mechanics and Engineering, 93, 253–273.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rockafellar R.T. (1970), Convex Analysis, Princeton University Press, Princeton.zbMATHGoogle Scholar
  30. 30.
    Romano G., Rosati L. and Marotti de Sciarra F. (1993), A variational theory for finite-step elasto-plastic problems, Int. J. Solids Structures, 30 (17), 2317–2334.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Romano G., Rosati L. and Marotti de Sciarra F. (1993), Variational principles for a class of finite step elastoplastic problems with non-linear mixed hardening, Computer Methods in Applied Mechanics and Engineering, 109, 293–314.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rubinov A.M. and Yagubov A.A. (1986), The space of star-shaped sets and its apli-cations in nonsmooth optimization, Mathematical Programming Study 29, 176–202.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Salencon J. and Tristan-Lopez A. (1980), Analyse de la stailite des talus en sols coherents anisotropes. C.R. Acad. Sci. Paris, 290B, 493–496.Google Scholar
  34. 34.
    Salencon J. (1983), Calcul a la Rupture et analyse limite, Paris, Presses de l’ecole nationale des Ponts et chaussees.Google Scholar
  35. 35.
    Simo J.C., Kennedy J.G. and Govindjee S. (1988), Nonsmooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical analysis, Int. J. Num. Meth. Engng., 26, 2161–2185.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Simo J.C. (1993), Recent developments in the numerical analysis of plasticity, in Progress in computational analysis of inelastic structures, E. Stein ed., CISM Courses and Lectures No. 321, Springer Verlag, Wien, New York, 115–174.Google Scholar
  37. 37.
    Stavroulakis G.E. (1991), Analysis of structures with interfaces. Formulation and study of variational-hemivariational inequality problems, Ph.D. Dissertation, Aristotle University, Thessaloniki.Google Scholar
  38. 38.
    Stavroulakis G.E. (1993), Convex decomposition for nonconvex energy problems in elastostatics and applications, European Journal of Mechanics A/Solids 12 (1), 1–20.MathSciNetzbMATHGoogle Scholar
  39. 39.
    Stavroulakis G.E. and Panagiotopoulos P.D. (1993), Convex multilevel decomposition algorithms for non-monotone problems, Int. J. Num. Meth. Engng. 36, 1945–1966.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Stavroulakis G.E. and Panagiotopoulos P.D. (1994), A new class of multilevel decomposition algorithms for nonmonotone problems based on the quasidifferentiability concept, Comp. Meth. Appl. Mech. Engng. 117, 289–307.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Stavroulakis G.E., Demyanov V.F. and Polyakova L.N. (1995), Quasidifferentiability in Mechanics, Journal of Global Optimization, 6 (4), 327–345.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Stavroulakis G.E. (1995), Variational problems for nonconvex elastoplasticity based on the quasidifferentiability concept. In: Proc. 4th Greek Nat. Congress on Mechanics, Eds. P.S. Theocaris, E.E. Gdoutos, Vol. I, 527–534.Google Scholar
  43. 43.
    Stavroulakis G.E. (1995), Quasidifferentiability and star-shaped sets. Application in nonconvex, finite dimensional elastoplasticity. Communications on Applied Nonlinear Analysis, 2 (3), 23–46.MathSciNetzbMATHGoogle Scholar
  44. 44.
    Stavroulakis G.E. and Mistakidis E.S. (1995), Numerical treatment of hemivariational inequalities. Computational Mechanics, 16, 406–416.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Stuart C.A. and Toland J.F. (1980), A variational method for boundary value problems with discontinuous nonlinearities. J. London Math. Soc. (2), 21, 319–328.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Tao P.D. and Souad F.B. (1986), Algorithms for solving a class of nonconvex optimization problems. Method of subgradients. In: FERMAT Days 85: Mathematics for Optimization, Ed. J.-B. Hiriart-Urruty, 249–271.Google Scholar
  47. 47.
    Temam R. (1983), Problemes mathematiques en plasticite, Gauthier-Villars, Paris.zbMATHGoogle Scholar
  48. 48.
    Toland J.F. (1979), A duality principle for nonconvex optimization and the calculus of variations. Arch. Rat. Mech. Analysis, 71, 41–61.MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Tzaferopoulos M.Ap. (1991), Numerical analysis of structures with monotone and nonmonotone, nonsmooth material laws and boundary conditions. Algorithms and applications, Doctoral Dissertation, Aristotle University, Department of Civil Engineering, Thessaloniki.Google Scholar
  50. 50.
    Tzaferopoulos M.Ap. and Panagiotopoulos P.D. (1993), Delamination of composites as a substationarity problem: Numerical approximation and algorithms. Computer Methods in Applied Mechanics and Engineering, 110 (1–2), 63–86.Google Scholar
  51. 51.
    Tzaferopoulos M.Ap. and Panagiotopoulos P.D. (1994), A numerical method for a class of hemivariational inequalities. Computational Mechanics, 15, 233–248.MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Panagiotopoulos P.D. and Tzaferopoulos M.Ap. (1995), On the numerical treatment of nonconvex energy problems. Multilevel decomposition methods for hemivariational inequalities. Computer Methods in Applied Mechanics and Engineering, 123 (1–4), 81–94.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Vladimir F. Dem’yanov
    • 1
  • Georgios E. Stavroulakis
    • 2
  • Ludmila N. Polyakova
    • 1
  • Panagiotis D. Panagiotopoulos
    • 3
    • 4
  1. 1.Department of MathematicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Lehr- und Forschungsgebiet für Mechanik; Lehrstuhl C für MathematikRWTHAachenGermany
  3. 3.Department of Civil EngineeringAristotle UniversityThessalonikiGreece
  4. 4.Faculty of Mathematics and PhysicsRWTHAachenGermany

Personalised recommendations