Skip to main content

Abstract

In this Chapter the basic building elements of Nonsmooth Mechanics are explained. To this end the notions of convex, nonconvex and quasidifferentiable superpotential are introduced. Boundary conditions and material laws resulting from convex or nonconvex, nonsmooth energy functions are defined by using the concept of subdifferential or of qua-sidifferential. Additional information on these subjects can be found in Duvaut and Lions [13], Panagiotopoulos [51], Hlavaček et al. [29], Moreau, Panagiotopoulos, Strang [42], [43], Antes, Panagiotopoulos [1], Panagiotopoulos [54], Moreau [39], [41], [44] and [22], Naniewicz, Panagiotopoulos [47].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antes H. and Panagiotopoulos P.D. (1992), The boundary integral approach to static and dynamic contact problems. Equality and inequality methods, Birkhauser Verlag, Basel, Boston.

    Book  MATH  Google Scholar 

  2. Aubin J.P. (1979), Applied functional analysis, J. Wiley and Sons, New York.

    MATH  Google Scholar 

  3. Baniotopoulos C.C. (1985), Analysis of structures for “complete” constitutive laws, Doctoral Dissertation, Scientific Annual fo the Faculty of Technology of the Aristotle University, Nr. 27 of the Q’ Issue, Thessaloniki.

    Google Scholar 

  4. Becker E. and Burger, W. (1975), Kontinuumsmechanik, B.G. Teubner, Stuttgart.

    Book  MATH  Google Scholar 

  5. Bisbos C. (1986), A Cholesky condensation method for unilateral contact problems, S.M. Archives 11, 1–23.

    MATH  Google Scholar 

  6. Bisbos C. (1990), A new algorithm for 3-D unilateral frictional contact problems, Report for INPRO ( Innovationsgesellschaft fur die Produktion in der Automobilin-dustrie ), Berlin.

    Google Scholar 

  7. Brezis H. (1973), Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland Publ. Co., Amsterdam and American Elsevier Publ. Co., New York.

    Google Scholar 

  8. Clarke F.H. (1983), Optimization and nonsmooth analysis, Wiley, New York.

    MATH  Google Scholar 

  9. Deutsche Beton-Verein (1992), Faserbeton, (Fassung August 1992 ) D.B.V.- Merkblatter. Deutche Beton-Verein E.V, Wiesbaden.

    Google Scholar 

  10. Demyanov V.F. and Vasilev L.V. (1985), Nondifferentiable optimization, Optimization Software Inc., N. York.

    Book  MATH  Google Scholar 

  11. Drucker D.C. (1951), A more fundamental approach to plastic stress-strain relations. Proc. First U.S. Nat. Congr. on Appl. Mech. Chicago.

    Google Scholar 

  12. Duvaut G., and Lions J.L. (1971), Un Probleme d’ elasticity avec Frottement, J. de Mecanique 10, 409–420.

    MathSciNet  MATH  Google Scholar 

  13. Duvaut G., and Lions J.L. (1972), Les Inequations en mecanique et en physique, Dunod, Paris.

    MATH  Google Scholar 

  14. Fels A., Hornbogen E., Tio T.K., Friedrich and K., Koster, V. (1985), Poul-out tests with metallic glass ribbons in different matrices. In: G. Ondracek (ed.) Verbundw-erkstoffe. Phasenverbindung und mechanische Eigenschaften, Deutsche Gesellschaft für Metallkunde Band 1, 185–194

    Google Scholar 

  15. Fichera G. (1963), The Signorini elastostatics problem with ambiguous boundary conditions. Proc. Int. Conf. Application of the theory of functions in continuum mechanics, Vol. I, Tbilisi.

    Google Scholar 

  16. Fichera G. (1964), Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei, VIII, (7) 91–140.

    Google Scholar 

  17. Fichera G. (1972), Boundary value problems in elasticity with unilateral constraints. In: Encyclopedia of Physics (ed. by S. Fliigge) Vol. VI a/2, Springer-Verlag, Berlin.

    Google Scholar 

  18. Floegl H. and Mang H.A. (1982), Tension stiffening concept based on bond slip. ASCE (ST 12), 108, 2681–2701.

    Google Scholar 

  19. Germain P. (1973), Cours de mecanique des milieux continus I. Masson, Paris.

    MATH  Google Scholar 

  20. Germain P. (1973), La methode de puissances virtuelles en mecanique des milieux continus, lere partie. Theorie du second gradient. J. de Mecanique, 12, 235–274.

    MathSciNet  MATH  Google Scholar 

  21. Germain P. (1973), The method of virtual power in continuum Mechanics. Part 2: Microstructure. SIAM J. Appl. Math., 25, 556–575.

    Article  MathSciNet  MATH  Google Scholar 

  22. Germain P. (1974), The role of thermodynamics in continuum mechanics. In: Foundations of Continuum Thermodynamics (ed. by D. Domingon, M.N.R. Nina and J.H. Whitelaw) McMillan, London.

    Google Scholar 

  23. Girkmann K. (1963), Flachentragwerke. Springer-Verlag, Wien.

    Book  Google Scholar 

  24. Grootenboer H.J., Leijten S.F.C.H. and Blauuwendraad, J. (1981), Numerical models for reinforced concrete structures in plane stress. Heron, 26, 1–83.

    Google Scholar 

  25. Halphen B. and Son N.Q. (1974), Plastic and viscoplastic materials with generalized potential. Mech. Res. Comm., 1, 43–47.

    Article  MATH  Google Scholar 

  26. Halphen B. and Son N.Q. (1975), Sur les materiaux standards generalises. J. de Mecanique, 14, 39–63.

    MATH  Google Scholar 

  27. Hamel G. (1967), Theoretische Mechanik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  28. Haslinger J. and Hlavacek I. (1982), Approximation of the Signorini problem with friction by a mixed finite element method. J.Math.Anal., 86, 99–122.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hlavacek J., Haslinger J., Necas J. and Lovisek J. (1988), Solution of variational inequalities in mechanics. Springer Verlag, N.York, Berlin.

    Book  MATH  Google Scholar 

  30. Heinz C. (1970), Das d’ Alembertsche Prinzip in der Kontinuumsmechanik. Acta Mechanica, 10, 110–129.

    Article  MathSciNet  Google Scholar 

  31. Hill R. (1948), A variational principle of maximum plastic work in classical plasticity. Quart. J.Mech. Appl. Math., 1, 18–28.

    Article  MathSciNet  MATH  Google Scholar 

  32. Hill R. (1950) Mathematical theory of plasticity. Univ. Press, Oxford.

    MATH  Google Scholar 

  33. Hughes T.J.R., Taylor R.L. and Kanoknukulchai W. (1977), A Finite Element Method for large displacement contact and impact problems. In: Formulations and computational algorithms in finite element analysis, (ed. by K.J. Bathe, F.T. Oden and W. Wunderich ). MIT Press, Cambridge.

    Google Scholar 

  34. Kikuchi N. and Oden J.T. (1988), Contact problems in elasticity. A study of variational inequalities and finite element methods. SI AM Publ., Philadelphia.

    Book  MATH  Google Scholar 

  35. Lanczos C. (1966), The variational principles of mechanics. University of Toronto Press, Toronto.

    Google Scholar 

  36. Lene F. (1973), Sur les materiaux elastiques a energie de deformation non quadratique. These de 3ème cycle, Universite Paris VI.

    Google Scholar 

  37. Lene F. (1974), Sur les materiaux elastiques a energie de deformation non quadra-tique. J. de Mecanique, 13, 9, 499–534.

    Google Scholar 

  38. Maugin G.A. (1980), The method of virtual power in continuum mechanics. Application to coupled fields. Acta Meccanica, 35, 1–70.

    Article  MathSciNet  MATH  Google Scholar 

  39. Moreau J.J. (1968), La notion du surpotentiel et les liaisons unilaterales on elasto-statique. C.R.Acad.Sci. Paris, 16TA, 954–957.

    Google Scholar 

  40. Moreau J.J. (1970), Sur les lois de frottement, de plasticite et de viscosite. C.R. Acad. Sc. Paris 271A, 608–611.

    Google Scholar 

  41. Moreau J.J. (1968), Une formulation du contact avec frottement sec; Application au calcul numerique. C.R. Acad. Sci. Paris, Ser. II, 302, 799–801.

    MathSciNet  Google Scholar 

  42. Moreau J.J. and Panagiotopoulos P.D.(eds) (1988), Nonsmooth mechanics and applications, CISM Vol. 302, Springer Verlag, Wien.

    MATH  Google Scholar 

  43. Moreau J.J., Panagiotopoulos P.D. and Strang G.(eds) (1988), Topics in nonsmooth mechanics, Birkhauser Verlag, Basel, Boston.

    MATH  Google Scholar 

  44. Moreau J.J. (1988), Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth mechanics and applications, CISM Vol. 302, Springer Verlag, Wien.

    Google Scholar 

  45. Moyson E. and van Gemert, D. (1985), Experimentale Priifung der Laminattheorie fur Faserverstarhte Verbundwerkstoffe. In: G. Ondracek (ed.) Verbundwerkstoffe. Phasenverbindung und mechanische Eigenschaften, Deutsche Gesellschaft fiir Met-allkunderbe 1, 99–115.

    Google Scholar 

  46. Mroz Z. (1973), Mathematical models of inelastic material behaviour. Univ. of Waterloo Press, Waterloo.

    Google Scholar 

  47. Naniewicz Z. and Panagiotopoulos P.D. (1995), Mathematical theory of hemivaria-tional inequalities and applications. Marcel Dekker.

    Google Scholar 

  48. Ondracek G. (ed) (1985), Verbundwerkstoffe. Phasenverbindung und mechanische Eigenschaften, Deutsche Gesellschaft fiir Mefallkunde, Band 1.

    Google Scholar 

  49. Paipetis S.A. and Papanicolaou G.C. (eds) (1988), Engineering applications of new composites. Omega Scientific, Oxford.

    Google Scholar 

  50. Panagiotopoulos P.D. (1980), Time-space unilateral variations and variational inequalities in relativistic mechanics. ZAMM, 60, T264 - T265.

    MathSciNet  MATH  Google Scholar 

  51. Panagiotopoulos P.D. (1985), Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhauser Verlag, Basel, Boston, russian translation MIR Publ. Moscow 1989

    Book  MATH  Google Scholar 

  52. Panagiotopoulos P.D. (1987), Ioffe’s fans and unilateral problems: A new conjecture. In: Unilateral problems in structural analysis 2, eds. G. del Piero, F.Maceri, CISM Courses and Lectures 304, Springer Verlag, Wien, N. York.

    Google Scholar 

  53. Panagiotopoulos P.D. (1988), Nonconvex superpotentials and hemivariational inequalities. Quasidiferentiability in mechanics, in Moreau, J.J. and Panagiotopoulos, P.D. (eds.), Nonsmooth Mechanics and Applications, CISM Lect. Nr. 302, Springer Verlag, Wien - New York.

    Google Scholar 

  54. Panagiotopoulos P.D. (1993), Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer Verlag, Berlin — Heidelberg — New York.

    Book  MATH  Google Scholar 

  55. Polyakova L.N. (1986), On minimizing the sum of a convex function and a concave function, Mathematical Programming Study 29, 69–73.

    Article  MathSciNet  MATH  Google Scholar 

  56. Prager W. (1957), On ideal-locking materials. Trans. Soc. Rheol., 1, 169–175.

    Article  MATH  Google Scholar 

  57. Prager W. (1958), Elastic solids of limited compressibility. Proc. 9th Int. Congress Appl. Mech. Brussels, Vol. 5.

    Google Scholar 

  58. Reckling K.A. (1967), Plastizitatstheorie und ihre Anwendung auf Festigkeitsprobleme. Springer-Verlag, Berlin.

    Book  Google Scholar 

  59. Rockafellar R.T. (1979), La theorie des sous-gradients et ses applications a I’opti-mization. Fonctions convexes et non-convexes, Les Presses de 1’ Universite de Montreal, Montreal.

    Google Scholar 

  60. Rockafellar R.T. (1980), Generalized directional derivatives and subgradients of non-convex functions. Can. J. Math. XXXII, 257–280.

    Article  MathSciNet  Google Scholar 

  61. Stavroulakis G.E. (1991), Analysis of structures with interfaces. Formulation and study of variational-hemivariational inequality problems, Ph.D. Dissertation, Aristotle University, Thessaloniki.

    Google Scholar 

  62. Stavroulakis G.E. (1993), Convex decomposition for nonconvex energy problems in elastostatics and applications, European Journal of Mechanics A/Solids 12 (1), 1–20.

    MathSciNet  MATH  Google Scholar 

  63. Stavroulakis G.E. and Panagiotopoulos P.D. (1993), Convex multilevel decomposition algorithms for non-monotone problems, Int. J. Num. Meth. Engng. 36, 1945–1966.

    Article  MathSciNet  MATH  Google Scholar 

  64. Toland J.F. (1979), A duality principle for non-convex optimization and the calculus of variations. Arch. Rat. Mech. Anal., 71, 41–61.

    Article  MathSciNet  MATH  Google Scholar 

  65. Truesdell C. (1966), Six lectures on modern natural philosophy. Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  66. Wriggers P., Simo J.C. and Taylor R.L. (1985), Penalty and augmented Lagrangian formulations for contact problems. In: Proc. Int. Conf. on Numerical Methods in Engineering. Theory and Applications NUMETA ‘85, Eds. J. Middleton, G.N. Pande, Vol. I, 97–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dem’yanov, V.F., Stavroulakis, G.E., Polyakova, L.N., Panagiotopoulos, P.D. (1996). Nonsmooth Mechanics I. In: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics. Nonconvex Optimization and Its Applications, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4113-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4113-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6844-1

  • Online ISBN: 978-1-4615-4113-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics