Nonsmooth Mechanics I

Nonsmooth Modelling in Mechanics
  • Vladimir F. Dem’yanov
  • Georgios E. Stavroulakis
  • Ludmila N. Polyakova
  • Panagiotis D. Panagiotopoulos
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 10)


In this Chapter the basic building elements of Nonsmooth Mechanics are explained. To this end the notions of convex, nonconvex and quasidifferentiable superpotential are introduced. Boundary conditions and material laws resulting from convex or nonconvex, nonsmooth energy functions are defined by using the concept of subdifferential or of qua-sidifferential. Additional information on these subjects can be found in Duvaut and Lions [13], Panagiotopoulos [51], Hlavaček et al. [29], Moreau, Panagiotopoulos, Strang [42], [43], Antes, Panagiotopoulos [1], Panagiotopoulos [54], Moreau [39], [41], [44] and [22], Naniewicz, Panagiotopoulos [47].


Variational Inequality Deformable Body Maximal Monotone Operator Hemivariational Inequality Virtual Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antes H. and Panagiotopoulos P.D. (1992), The boundary integral approach to static and dynamic contact problems. Equality and inequality methods, Birkhauser Verlag, Basel, Boston.CrossRefzbMATHGoogle Scholar
  2. 2.
    Aubin J.P. (1979), Applied functional analysis, J. Wiley and Sons, New York.zbMATHGoogle Scholar
  3. 3.
    Baniotopoulos C.C. (1985), Analysis of structures for “complete” constitutive laws, Doctoral Dissertation, Scientific Annual fo the Faculty of Technology of the Aristotle University, Nr. 27 of the Q’ Issue, Thessaloniki.Google Scholar
  4. 4.
    Becker E. and Burger, W. (1975), Kontinuumsmechanik, B.G. Teubner, Stuttgart.CrossRefzbMATHGoogle Scholar
  5. 5.
    Bisbos C. (1986), A Cholesky condensation method for unilateral contact problems, S.M. Archives 11, 1–23.zbMATHGoogle Scholar
  6. 6.
    Bisbos C. (1990), A new algorithm for 3-D unilateral frictional contact problems, Report for INPRO ( Innovationsgesellschaft fur die Produktion in der Automobilin-dustrie ), Berlin.Google Scholar
  7. 7.
    Brezis H. (1973), Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland Publ. Co., Amsterdam and American Elsevier Publ. Co., New York.Google Scholar
  8. 8.
    Clarke F.H. (1983), Optimization and nonsmooth analysis, Wiley, New York.zbMATHGoogle Scholar
  9. 9.
    Deutsche Beton-Verein (1992), Faserbeton, (Fassung August 1992 ) D.B.V.- Merkblatter. Deutche Beton-Verein E.V, Wiesbaden.Google Scholar
  10. 10.
    Demyanov V.F. and Vasilev L.V. (1985), Nondifferentiable optimization, Optimization Software Inc., N. York.CrossRefzbMATHGoogle Scholar
  11. 11.
    Drucker D.C. (1951), A more fundamental approach to plastic stress-strain relations. Proc. First U.S. Nat. Congr. on Appl. Mech. Chicago.Google Scholar
  12. 12.
    Duvaut G., and Lions J.L. (1971), Un Probleme d’ elasticity avec Frottement, J. de Mecanique 10, 409–420.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Duvaut G., and Lions J.L. (1972), Les Inequations en mecanique et en physique, Dunod, Paris.zbMATHGoogle Scholar
  14. 14.
    Fels A., Hornbogen E., Tio T.K., Friedrich and K., Koster, V. (1985), Poul-out tests with metallic glass ribbons in different matrices. In: G. Ondracek (ed.) Verbundw-erkstoffe. Phasenverbindung und mechanische Eigenschaften, Deutsche Gesellschaft für Metallkunde Band 1, 185–194Google Scholar
  15. 15.
    Fichera G. (1963), The Signorini elastostatics problem with ambiguous boundary conditions. Proc. Int. Conf. Application of the theory of functions in continuum mechanics, Vol. I, Tbilisi.Google Scholar
  16. 16.
    Fichera G. (1964), Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei, VIII, (7) 91–140.Google Scholar
  17. 17.
    Fichera G. (1972), Boundary value problems in elasticity with unilateral constraints. In: Encyclopedia of Physics (ed. by S. Fliigge) Vol. VI a/2, Springer-Verlag, Berlin.Google Scholar
  18. 18.
    Floegl H. and Mang H.A. (1982), Tension stiffening concept based on bond slip. ASCE (ST 12), 108, 2681–2701.Google Scholar
  19. 19.
    Germain P. (1973), Cours de mecanique des milieux continus I. Masson, Paris.zbMATHGoogle Scholar
  20. 20.
    Germain P. (1973), La methode de puissances virtuelles en mecanique des milieux continus, lere partie. Theorie du second gradient. J. de Mecanique, 12, 235–274.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Germain P. (1973), The method of virtual power in continuum Mechanics. Part 2: Microstructure. SIAM J. Appl. Math., 25, 556–575.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Germain P. (1974), The role of thermodynamics in continuum mechanics. In: Foundations of Continuum Thermodynamics (ed. by D. Domingon, M.N.R. Nina and J.H. Whitelaw) McMillan, London.Google Scholar
  23. 23.
    Girkmann K. (1963), Flachentragwerke. Springer-Verlag, Wien.CrossRefGoogle Scholar
  24. 24.
    Grootenboer H.J., Leijten S.F.C.H. and Blauuwendraad, J. (1981), Numerical models for reinforced concrete structures in plane stress. Heron, 26, 1–83.Google Scholar
  25. 25.
    Halphen B. and Son N.Q. (1974), Plastic and viscoplastic materials with generalized potential. Mech. Res. Comm., 1, 43–47.CrossRefzbMATHGoogle Scholar
  26. 26.
    Halphen B. and Son N.Q. (1975), Sur les materiaux standards generalises. J. de Mecanique, 14, 39–63.zbMATHGoogle Scholar
  27. 27.
    Hamel G. (1967), Theoretische Mechanik. Springer-Verlag, Berlin.zbMATHGoogle Scholar
  28. 28.
    Haslinger J. and Hlavacek I. (1982), Approximation of the Signorini problem with friction by a mixed finite element method. J.Math.Anal., 86, 99–122.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hlavacek J., Haslinger J., Necas J. and Lovisek J. (1988), Solution of variational inequalities in mechanics. Springer Verlag, N.York, Berlin.CrossRefzbMATHGoogle Scholar
  30. 30.
    Heinz C. (1970), Das d’ Alembertsche Prinzip in der Kontinuumsmechanik. Acta Mechanica, 10, 110–129.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hill R. (1948), A variational principle of maximum plastic work in classical plasticity. Quart. J.Mech. Appl. Math., 1, 18–28.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hill R. (1950) Mathematical theory of plasticity. Univ. Press, Oxford.zbMATHGoogle Scholar
  33. 33.
    Hughes T.J.R., Taylor R.L. and Kanoknukulchai W. (1977), A Finite Element Method for large displacement contact and impact problems. In: Formulations and computational algorithms in finite element analysis, (ed. by K.J. Bathe, F.T. Oden and W. Wunderich ). MIT Press, Cambridge.Google Scholar
  34. 34.
    Kikuchi N. and Oden J.T. (1988), Contact problems in elasticity. A study of variational inequalities and finite element methods. SI AM Publ., Philadelphia.CrossRefzbMATHGoogle Scholar
  35. 35.
    Lanczos C. (1966), The variational principles of mechanics. University of Toronto Press, Toronto.Google Scholar
  36. 36.
    Lene F. (1973), Sur les materiaux elastiques a energie de deformation non quadratique. These de 3ème cycle, Universite Paris VI.Google Scholar
  37. 37.
    Lene F. (1974), Sur les materiaux elastiques a energie de deformation non quadra-tique. J. de Mecanique, 13, 9, 499–534.Google Scholar
  38. 38.
    Maugin G.A. (1980), The method of virtual power in continuum mechanics. Application to coupled fields. Acta Meccanica, 35, 1–70.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Moreau J.J. (1968), La notion du surpotentiel et les liaisons unilaterales on elasto-statique. C.R.Acad.Sci. Paris, 16TA, 954–957.Google Scholar
  40. 40.
    Moreau J.J. (1970), Sur les lois de frottement, de plasticite et de viscosite. C.R. Acad. Sc. Paris 271A, 608–611.Google Scholar
  41. 41.
    Moreau J.J. (1968), Une formulation du contact avec frottement sec; Application au calcul numerique. C.R. Acad. Sci. Paris, Ser. II, 302, 799–801.MathSciNetGoogle Scholar
  42. 42.
    Moreau J.J. and Panagiotopoulos P.D.(eds) (1988), Nonsmooth mechanics and applications, CISM Vol. 302, Springer Verlag, Wien.zbMATHGoogle Scholar
  43. 43.
    Moreau J.J., Panagiotopoulos P.D. and Strang G.(eds) (1988), Topics in nonsmooth mechanics, Birkhauser Verlag, Basel, Boston.zbMATHGoogle Scholar
  44. 44.
    Moreau J.J. (1988), Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth mechanics and applications, CISM Vol. 302, Springer Verlag, Wien.Google Scholar
  45. 45.
    Moyson E. and van Gemert, D. (1985), Experimentale Priifung der Laminattheorie fur Faserverstarhte Verbundwerkstoffe. In: G. Ondracek (ed.) Verbundwerkstoffe. Phasenverbindung und mechanische Eigenschaften, Deutsche Gesellschaft fiir Met-allkunderbe 1, 99–115.Google Scholar
  46. 46.
    Mroz Z. (1973), Mathematical models of inelastic material behaviour. Univ. of Waterloo Press, Waterloo.Google Scholar
  47. 47.
    Naniewicz Z. and Panagiotopoulos P.D. (1995), Mathematical theory of hemivaria-tional inequalities and applications. Marcel Dekker.Google Scholar
  48. 48.
    Ondracek G. (ed) (1985), Verbundwerkstoffe. Phasenverbindung und mechanische Eigenschaften, Deutsche Gesellschaft fiir Mefallkunde, Band 1.Google Scholar
  49. 49.
    Paipetis S.A. and Papanicolaou G.C. (eds) (1988), Engineering applications of new composites. Omega Scientific, Oxford.Google Scholar
  50. 50.
    Panagiotopoulos P.D. (1980), Time-space unilateral variations and variational inequalities in relativistic mechanics. ZAMM, 60, T264 - T265.MathSciNetzbMATHGoogle Scholar
  51. 51.
    Panagiotopoulos P.D. (1985), Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhauser Verlag, Basel, Boston, russian translation MIR Publ. Moscow 1989CrossRefzbMATHGoogle Scholar
  52. 52.
    Panagiotopoulos P.D. (1987), Ioffe’s fans and unilateral problems: A new conjecture. In: Unilateral problems in structural analysis 2, eds. G. del Piero, F.Maceri, CISM Courses and Lectures 304, Springer Verlag, Wien, N. York.Google Scholar
  53. 53.
    Panagiotopoulos P.D. (1988), Nonconvex superpotentials and hemivariational inequalities. Quasidiferentiability in mechanics, in Moreau, J.J. and Panagiotopoulos, P.D. (eds.), Nonsmooth Mechanics and Applications, CISM Lect. Nr. 302, Springer Verlag, Wien - New York.Google Scholar
  54. 54.
    Panagiotopoulos P.D. (1993), Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer Verlag, Berlin — Heidelberg — New York.CrossRefzbMATHGoogle Scholar
  55. 55.
    Polyakova L.N. (1986), On minimizing the sum of a convex function and a concave function, Mathematical Programming Study 29, 69–73.MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Prager W. (1957), On ideal-locking materials. Trans. Soc. Rheol., 1, 169–175.CrossRefzbMATHGoogle Scholar
  57. 57.
    Prager W. (1958), Elastic solids of limited compressibility. Proc. 9th Int. Congress Appl. Mech. Brussels, Vol. 5.Google Scholar
  58. 58.
    Reckling K.A. (1967), Plastizitatstheorie und ihre Anwendung auf Festigkeitsprobleme. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  59. 59.
    Rockafellar R.T. (1979), La theorie des sous-gradients et ses applications a I’opti-mization. Fonctions convexes et non-convexes, Les Presses de 1’ Universite de Montreal, Montreal.Google Scholar
  60. 60.
    Rockafellar R.T. (1980), Generalized directional derivatives and subgradients of non-convex functions. Can. J. Math. XXXII, 257–280.MathSciNetCrossRefGoogle Scholar
  61. 61.
    Stavroulakis G.E. (1991), Analysis of structures with interfaces. Formulation and study of variational-hemivariational inequality problems, Ph.D. Dissertation, Aristotle University, Thessaloniki.Google Scholar
  62. 62.
    Stavroulakis G.E. (1993), Convex decomposition for nonconvex energy problems in elastostatics and applications, European Journal of Mechanics A/Solids 12 (1), 1–20.MathSciNetzbMATHGoogle Scholar
  63. 63.
    Stavroulakis G.E. and Panagiotopoulos P.D. (1993), Convex multilevel decomposition algorithms for non-monotone problems, Int. J. Num. Meth. Engng. 36, 1945–1966.MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Toland J.F. (1979), A duality principle for non-convex optimization and the calculus of variations. Arch. Rat. Mech. Anal., 71, 41–61.MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Truesdell C. (1966), Six lectures on modern natural philosophy. Springer-Verlag, Berlin.CrossRefzbMATHGoogle Scholar
  66. 66.
    Wriggers P., Simo J.C. and Taylor R.L. (1985), Penalty and augmented Lagrangian formulations for contact problems. In: Proc. Int. Conf. on Numerical Methods in Engineering. Theory and Applications NUMETA ‘85, Eds. J. Middleton, G.N. Pande, Vol. I, 97–106.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Vladimir F. Dem’yanov
    • 1
  • Georgios E. Stavroulakis
    • 2
  • Ludmila N. Polyakova
    • 1
  • Panagiotis D. Panagiotopoulos
    • 3
    • 4
  1. 1.Department of MathematicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Lehr- und Forschungsgebiet für Mechanik; Lehrstuhl C für MathematikRWTHAachenGermany
  3. 3.Department of Civil EngineeringAristotle UniversityThessalonikiGreece
  4. 4.Faculty of Mathematics and PhysicsRWTHAachenGermany

Personalised recommendations