Advertisement

Quasidifferentiable Functions and Sets

Quasidifferentiable Optimization and Optimality Conditions
  • Vladimir F. Dem’yanov
  • Georgios E. Stavroulakis
  • Ludmila N. Polyakova
  • Panagiotis D. Panagiotopoulos
Chapter
  • 138 Downloads
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 10)

Abstract

In this Chapter quasidifferentiable and codifferentiable functions and sets are introduced and studied for the general finite dimensional case. The corresponding calculus rules are given and the links to other related nonsmooth analysis notions and optimality conditions are discussed.

Keywords

Directional Derivative Gauge Function Steep Descent Direction Calculus Rule Exposed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, F.H., (1983) Optimization and nonsmooth analysis, New York, Wiley.zbMATHGoogle Scholar
  2. 2.
    Demyanov, V.F. and Vasiliev, L.N. (1985), Nondifferentiable Optimization, Optimization Software, New York.CrossRefzbMATHGoogle Scholar
  3. 3.
    Demyanov, V.F. and Rubinov, A.M. (1985), Quasidifferentiable Calculus, Optimization Software, New York.Google Scholar
  4. 4.
    Demyanov, V.F and Rubinov, A.M. (1995), Introduction to Constructive Nonsmooth Analysis, Peter Lang Verlag, Frankfurt a.M. — Bern — New York, 414 p.Google Scholar
  5. 5.
    Demyanov, V. and Sutti, C. (1995), Representation of the Clarke subdifferential for a regular subdifferentiable function. Forthcoming.Google Scholar
  6. 6.
    Gorokhovik, V.V. (1982), On quasidifferentiability of real-valued functions. Doklady of the USSR Acad, of Sci., 266 (6), 1294–1298.MathSciNetGoogle Scholar
  7. 7.
    Gorokhovik, V.V. (1984), Quasidifferentiability of real-valued functions and conditions for a local extremum (in Russian). Syberian Math. J., 25 (3), 62–70.MathSciNetGoogle Scholar
  8. 8.
    Handschug, M. (1989), On one class of equivalent quasidifferentials. Vestnik of Leningrad University, 8, 28–31.MathSciNetGoogle Scholar
  9. 9.
    Handschug, M. (1989), On equivalent quasidifferentials in the two-dimensional case. Optimization, 20 (1), 37–43.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Moreau, J.J. (1963), Fonctionelles sous-differentiables. C.R. Acad. Sci. Paris Ser. A-B, 257, 4117–4119.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Pallaschke, D. and Urbanski, R. (1994), Reduction of quasidifferentials and minimal representations, Mathematical Programming 66, 161–180.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Panagiotopoulos, P.D. (1985), Inequality problems in mechanics and applications. Convex and nonconvex energy functions, Birkhauser Verlag, Basel - Boston - Stuttgart. ( Russian translation, MIR Publ., Moscow 1988 ).Google Scholar
  13. 13.
    Panagiotopoulos, P.D. (1993), Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer Verlag, Berlin — Heidelberg — New York.CrossRefzbMATHGoogle Scholar
  14. 14.
    Rockafellar, R.T. (1970), Convex Analysis, Princeton University Press, Princeton.zbMATHGoogle Scholar
  15. 15.
    Rubinov, A.M. and Yagubov, A.A. (1986), The space of star-shaped sets and its applications in nonsmooth optimization, Mathematical Programming Study 29, 176–202.Google Scholar
  16. 16.
    Scholtes, S. (1992), Minimal pairs of convex bodies in two dimensions. Mathematika, 39, 267–273.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Vladimir F. Dem’yanov
    • 1
  • Georgios E. Stavroulakis
    • 2
  • Ludmila N. Polyakova
    • 1
  • Panagiotis D. Panagiotopoulos
    • 3
    • 4
  1. 1.Department of MathematicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Lehr- und Forschungsgebiet für Mechanik; Lehrstuhl C für MathematikRWTHAachenGermany
  3. 3.Department of Civil EngineeringAristotle UniversityThessalonikiGreece
  4. 4.Faculty of Mathematics and PhysicsRWTHAachenGermany

Personalised recommendations