Skip to main content

The Effect of Defects on Inorganic Luminescent Materials

  • Chapter
Wide-Gap Luminescent Materials: Theory and Applications

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 2))

Abstract

Defects present in host crystals can have a strong effect on the luminescent properties of dopant ions in these materials. These effects manifest both in the optical and electrical properties of these crystals.

In this chapter, we will present optical and electrical techniques to determine the defect state of a crystal host and its luminescent dopants. First, we will consider how electrical conductivity measurements can determine the defect structure of the host crystal and its relationship to the optical properties of the dopants. Then, we will discuss how different dopants, and sometimes even the same dopant, can interfere with the expected property of a luminescent ion. These interactions can be seen by site selection spectroscopy and by the dynamic analysis of energy transfer between ions. Finally, we will show how cathodoluminescent measurements demonstrate the competition between defects and dopants for energy in luminescent properties. We present the experimental methods in this chapter as examples of the increasingly sophisticated techniques being used to understand the effect of defects on luminescence activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tissue, B. M., Jia, W., Lu, L. and Yen, W. M., 1991: “Coloration of Chromium-Doped Yttrium Aluminum Garnet Single Crystal Fibers Using a Divalent Codopant,” J. Appl. Phys. 70, pp. 3755–3777.

    Article  Google Scholar 

  2. Ostroumov, V. B., Privis, Yu. S., Smirnov, V. A. and Shcherbakov, I. A., 1986: “Sensitizing of Nd3+ Luminescence by Cr3+ in Gallium Garnets,” J. Opt. Soc. Am. B 3, pp. 81–101.

    Article  CAS  Google Scholar 

  3. Mears, R. J. and Baker, S. R., 1992: “Erbium Fibre Amplifiers and Lasers,” Opt. Quant. Elec. 24, pp. 5127–538.

    Article  Google Scholar 

  4. Vivien, D., 1994: “Chemical, Structural and Synthesis Effects in Inorganic Laser Materials,” Opt. Mat. 4, pp. 5–10.

    Article  CAS  Google Scholar 

  5. Collongues, R., 1992: “Nonstochiometry in Oxides,” Prog. Cryst. Growth and Charact. 25, pp. 203–240.

    Article  CAS  Google Scholar 

  6. Slack, G. A., Oliver, D. W., Chrenko, R. M. and Roberts, S., 1969: “Optical Absorption of Y3Al5O12 from 10-to 55000-cm-1 Wave Numbers,” Phys. Rev. 177, pp. 1308–1314.

    Article  CAS  Google Scholar 

  7. Metselaar, R. and Larsen, P. K., 1976: “Diffusion of Oxygen Vacancies in Yttrium Iron Gamet Investigated by Dynamic Conductivity Measurements,” J. Phys. Chem. 37, pp. 599–605.

    CAS  Google Scholar 

  8. Rotman, S. R., Tandon, R. P. and Tuller, H. L., 1985: “Defect-Property Correlations in Garnet Crystals: the Electrical Conductivity and Defect Structure of Luminescent Cerium-Doped Yttrium Aluminum Garnet,” J. Appl. Phys. 57, pp.1951–1955.

    Article  CAS  Google Scholar 

  9. Rotman, S. R. and Tuller, H. L., 1987: “Defect-Property Correlations in Garnet Crystals: III. Electrical Conductivity and Defect Structure of Luminescent Nickel-Doped Yurium-Aluminum-Garnet,” J. Appl. Phys. 62, pp. 1305–1312.

    Article  CAS  Google Scholar 

  10. Rotman, S. R., Roth, M., Tuller, H. L. and Warde, C., 1989: “Defect-Property Correlations in Garnet Crystals: IV. The Optical Properties of Nickel-Doped Yttrium-Aluminum-Garnet,” J. Appl. Phys. 66(3), pp. 1366–1369.

    Article  CAS  Google Scholar 

  11. Nie, W., Boulon, G. and Mares, J., 1989: “Spectroscopy of Multisites Chromium (III) in Yttrium Garnet,” Chem. Phys. Letts. 160, pp. 597–601.

    Article  CAS  Google Scholar 

  12. Nie, W., Boulon, G. and Monteil, A., 1989: “Zero-Phonon Lines and Energy Transfer Between Chromium (III) and Neodymium (III) Multisites in Yttrium Aluminum Garnet (YAG),” Chem. Phys. Letts. 164, pp. 106–112.

    Article  CAS  Google Scholar 

  13. Mares, J. A., Nie, W. and Boulon, G., 1990: “Multisites and Energy Transfer in Cr3+ — Nd3+ Codoped Y3Al5O12 and YAlO3 Crystals,” J. de Phys. 51, pp.1655–1669.

    Article  CAS  Google Scholar 

  14. Nie, W., Monteil, A. and Boulon, G., 1990: “Spectroscopy of Multisites Cr3+ and Nd3+ Multisites in Y3Al5O12 Laser Crystals,” Opt. Quant. Elec. 22, pp. S227–S245.

    Article  CAS  Google Scholar 

  15. Mares, J. A., Khas, Z., Nie, W. and Boulon, G., 1991: “Non-Radiative Energy Transfer Between Cr3+ and Nd3+ Multisites in Y3Al5O12 Laser Crystals,” J. Phys. I, 1, pp. 881–899.

    Article  CAS  Google Scholar 

  16. Mares, J. A., Nie, W. and Boulon, G., 1991: “Energy Transfer Processes Between Various Cr3+ and Nd3+ Multisites in YAG: Nd, Cr,” J. Lum, 48-49, pp. 227–231.

    Google Scholar 

  17. Nie, W., Kalisky, Y., Pedrini, C., Monteil, A. and Boulon, G., 1990: “Energy Transfer from Cr3+ Multisites to Tm3+ Multisites in Yttrium Aluminum Garnet,” Opt. Quant. Elec. 22, pp. S123–S131.

    Article  CAS  Google Scholar 

  18. Rotman, S. R., Eyal, A., Kalisky, Y., Brenier, A., Pedrini, C., Boulon, G., 1994: “Modelling Unusually Fast Energy Transfer in Crystals,” Opt. Mat. 4, pp. 31–33.

    Article  CAS  Google Scholar 

  19. Yugami, H., Nakajami, A., Ishigame, M. and Suemoto, T., 1991: “Local Structures in the Superionic Conductor Y3+-doped CeO2 Studied Using Site-Selective Spectroscopy,” Phys. Rev. B 44, pp. 4862–4871.

    Article  CAS  Google Scholar 

  20. Nelson, P. R., Brenier, A., Pedrini, C., Boulon, G. and Mares, J., 1991: “Chromium-Neodymium Energy Transfer in YAP,” J. de Phys. IV (C7) 1, pp. 375–378.

    Google Scholar 

  21. Monteil, A., 1990: “Simulation and Application of Site-Selective Optical Spectroscop to chromium-Doped Gadolinium Garnets,” J. Phys. Cond. Mat. 2, pp. 9639–9651.

    Article  CAS  Google Scholar 

  22. Monteil, A., Nie, W., Madej, C. and Boulon, G., 1990: “Multisites Cr3+ in GGG and GSGG Garnets,” Op. Quant. Elec. 22, pp. S247–S257.

    Article  CAS  Google Scholar 

  23. Vergara, I., Monteil, A., Boulon, G., Madej, C. and Garcia Sole, J., 1990: “Influence of Multisites in the Energy Transfer of Chromium and Neodymium Doubly Doped GGG Crystals,” Mat. Chem. Phys. 26, pp.181–191.

    Article  CAS  Google Scholar 

  24. Han, T. P. J., Scott, M. A., Jacque, F., Callagher, H. G. and Henderson, B., 1993: “Nd3+ — Cr3+ Pairs in Gd3Sc2Ga3O12 Garnet Crystals,” Chem. Phys. Letts. 208(1, 2) pp. 63–67.

    Article  CAS  Google Scholar 

  25. Eyal, A. and Rotman, S. R., 1993: “The Determination of Acceptor Distribution from the Donor Decay Response in Codoped Crystals,” Chem. Phys. Lett. 206(1-4) pp. 113–118.

    Article  CAS  Google Scholar 

  26. Inokuti, M. and Hirayama, F., 1965: “Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence,” J. Chem. Phys. 43, pp. 1978–1989.

    Article  CAS  Google Scholar 

  27. Rotman, S. R. and Hartmann, F. X., 1988: “Non-Radiative Energy Transfer in Non-Uniform Codoped Laser Crystals,” Chem. Phys. Lett. 152 (4,5), pp. 311–378.

    Article  CAS  Google Scholar 

  28. Blasse, G. and Bril, A., 1967: “A New Phosphor for Flying-Spot Cathode-Ray Tubes for Color Television: Yellow-Emitting Y3Al5O12:Ce3+,” Appl. Phys. Letts. 11, pp. 53–55.

    Article  CAS  Google Scholar 

  29. Wong, C. M., Rotman, S. R. and Warde, C., 1984: “Optical Studies of Cerium Doped Yttrium Aluminum Garnet Single Crystals,” Appl. Phys. Lett. 44, pp. 1038–1041.

    Article  CAS  Google Scholar 

  30. Robbins, D. J., Cockayne, B., Lent, B., Duckworth, C. N. and Glasper, J. L., 1979: “Investigation of Competitive Recombination Processes in Rare-Earth Activated Garnet Phosphors,” Phys. Rev. B 19, pp. 1254–1269.

    Article  CAS  Google Scholar 

  31. Robbins, D. J., Cockayne, B., Glasper, J. L. and Lent, B., 1979: “The Temperature Dependence of Rare-Earth Activated Garnet Phosphors. I. Intensity and Lifetime Measurements on Undoped and Ce-doped Y3Al5O12,” J. Electrochem. Soc. 126, pp. 1213–1220.

    Article  CAS  Google Scholar 

  32. Robbins, D. J., Cockayne, B., Glasper, J. L. and Lent, B., 1979: “The Temperature Dependence of Rare-Earth Activated Garnet Phosphors. II. A Comparative Study of Ce3+, Eu3+, Tb3+ and Gd3+ in Y3Al5O12,” J. Electrochem. Soc. 126, pp.1221–1228.

    Article  CAS  Google Scholar 

  33. Robbins, D. J., 1979: “The Effects of Crystal Field and Temperature on the Photoluminescence Excitation Efficiency of Ce3+ in YAG,” J. Electrochem. Soc. 126, pp. 1550–1555.

    Article  CAS  Google Scholar 

  34. Robbins, D. J., Cockayne, B., Lent, B. and Glasper, J. L., 1979: “The Relationship Between Concentration and Efficiency in Rare Earth Activated Phosphors,” J. Electrochem. Soc. 126, pp. 1556–1563.

    Article  CAS  Google Scholar 

  35. Hayes, W., Yamaga, M., Robbins, D. J. and Cockayne, B., 1980: “Optical Detection of EPR of Recombination Centres in YAG,” J. Phys. C 13, pp. L1085–L1089.

    Article  CAS  Google Scholar 

  36. Rotman, S. R. and Warde, C., 1985: “Defect Luminescence in Cerium-Doped Yttrium Aluminum Garnet,” J. Appl. Phys. 58, pp. 522–525.

    Article  CAS  Google Scholar 

  37. Aizenberg, G. E. and Rotman, S. R., 1991: “A Non-Radiative Energy Transfer Model for Cerium-Doped Yttrium Aluminum Garnet (Ce:YAG),” Phys. Stat. Sol. (a) 126, pp. 263–273.

    Article  CAS  Google Scholar 

  38. Rozenfeld, Y. and Rotman, S. R., 1993: “The Luminescence of Defects in Yttrium Aluminum Garnet,” Phys. Stat. Sol. (a) 139, pp.249–262.

    Article  CAS  Google Scholar 

  39. Stevels, A. L. N. and Schrama-De Pauw, A. D. M., 1976: “Effects of Defects on the quantum Efficiency of Eu2+-Doped Aluminates with the Magnetoplumbite-Type Crystal Structure,” J. hum. 14, pp. 147–153.

    CAS  Google Scholar 

  40. Stevels, A. L. N. and Verstegen, J. M. P. J., 1976: “Eu2+ → Mn2+ Energy Transfer in Hexagonal Aluminates,” J. Lum. 14, pp. 207–218.

    Article  CAS  Google Scholar 

  41. Verstegen, J. M. P. J. and Stevels, A. L. N., 1974: “The Relation Between Crystal Structure and Luminescence in ϟ-Alumina and Magnetoplumbite Phases,” J. Lum. 9, pp. 406–414.

    Article  CAS  Google Scholar 

  42. Luria, E. and Rotman, S. R., 1994: “Converting Eu+2 to Eu+3 in Europium-Doped LMA,” J. Lum. 60-61, pp. 67–69

    Article  CAS  Google Scholar 

  43. Luria, E. and Rotman, S. R., 1994: “Time decay of the Excited States of Eu+2 in Europium-Doped LMA,” J. de Phys. IV 4, pp. 435–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rotman, S.R. (1997). The Effect of Defects on Inorganic Luminescent Materials. In: Rotman, S.R. (eds) Wide-Gap Luminescent Materials: Theory and Applications. Electronic Materials: Science and Technology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4100-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4100-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9837-0

  • Online ISBN: 978-1-4615-4100-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics