Skip to main content

Abstract

Reliability is the characteristic of an object that provides a required function whenever such a function is sought. Failure to provide the function is a lack of reliability. Today’s consumer of electronic goods expects to see a news report when he or she turns the TV power on; but it is not a tragedy if the television is unreliable. However, the electronic data-processing user has become much more dependent on the reliability of a system. Air-traffic control systems, medical diagnostic systems, factory production systems, and environmental control systems for high risk chemical industries are examples of some areas where system reliability is a must, and failure may be life threatening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Chen and M. Y. Hsiao. “Error Correcting Codes for Semiconductor Memory Applications: A State of the Art Review,” IBM J. Res. Develop., 28(2): pp. 124–134, 1985.

    Article  Google Scholar 

  2. A. J. Wagner and H. C. Cook, “Modeling the Temperature Dependence of Integrated Circuit Failures,” in Thermal Management Concepts in Microelectronic Packaging, vol. ISHM Technical Monograph Series 6984-003, p, 20, International Society for Hybrid Microelectronics, Silver Spring, MD, 1984

    Google Scholar 

  3. O.W, Holmes. “The Deacon’s Masterpiece,” in A New Library of Poetry and Song, ed. by W. C. Bryant, p. 977, Baker Taylor Company, New York, 1900.

    Google Scholar 

  4. J. F. Graves and W. Gurany. “Reliability Effects of Fluorine Contamination of Aluminum Bonding Pads on Semiconductor Chips,” Solid State Technol., p. 227 (October 1983).

    Google Scholar 

  5. K. L. Wong. “Unified Field (Failure) Theory: Demise of the Bathtub Curve,” Proceedings Annual Reliability and Maintainability Symposium, pp. 402–407, 1981.

    Google Scholar 

  6. A. J. Wager and H. C. Cook. “Modeling the Temperature Dependence of Integrated Circuit Failures,” in Thermal Management Concepts in Microelectronic Packaging, vol. ISHM Technical Monograph Series 6984-003, International Society for Hybrid Microelectronics, Silver Spring, MD, 1984.

    Google Scholar 

  7. P. A. Tobias and D. C. Trinidade. Applied Reliability, pp. 109–114, Van Nostrand Reinhold Co., New York, 1986.

    MATH  Google Scholar 

  8. P. A. Tobias and D. C. Trinidade. “Applied Reliability,” in Applied Reliability, p. 63, Van Nostrand Reinhold Co., New York, 1986

    Google Scholar 

  9. L. Goldthwaite. “Failure Rate Study for the Log-normal Lifetime Model,” Proc. of the 7th National Symposium on Reliability and Quality Control, pp. 208–213, 1961.

    Google Scholar 

  10. H. A. Schafft. “Testing and Fabrication of Wire-Bond Electrical Connections: A Comprehensive Survey,” NBS Technical Note 726, U. S. Department of Commerce, September 1972.

    Google Scholar 

  11. G. G. Harmon. “Metallurgical Failure Modes of Wire Bonds,” 12th Annual Proceedings, Reliability Physics, pp. 131–141, 1974.

    Google Scholar 

  12. P. G. Shewman. Diffusion in Solids, p. 85, McGraw-Hill, New York, 1963.

    Google Scholar 

  13. P. G. Shewman. Diffusion in Solids, p. 61, McGraw-Hill, New York, 1963.

    Google Scholar 

  14. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., p. 9, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  15. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., p. 16, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  16. H. Wagar. “Principles of Conduction Through Electrical Contacts,” in Physical Design of Electronic Systems, vol. 3, p. 447, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  17. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., p. 4, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  18. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., pp. 5 and 62, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  19. H. Wagar. “Principles of Conduction Through Electrical Contacts,” in Physical Design of Electronic Systems, vol. 3 p. 456, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  20. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., p. 367, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  21. J. B. P. Williamson. The Microworld of the Contact Spot, “Electrical Contacts, 1981.” pp. 1–10, 1981.

    Google Scholar 

  22. ASTM Standard E10 Test Method. Brinnel Hardness of Metallic Materials, American Society for Testing and Materials, Philadelphia, PA. 1993.

    Google Scholar 

  23. H. Wagar. “Principles of Conduction Through Electrical Contacts,” in Physical Design of Electronic Systems, vol. 3, p. 449, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  24. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., pp. 373–374, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  25. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., p. 30, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  26. H. Wagar. “Principles of Conduction Through Electrical Contacts,” in Physical Design of Electronic Systems, vol. 3, p. 450, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  27. H. Wagar. “Principles of Conduction Through Electrical Contacts,” in Physical Design of Electronic Systems, vol. 3, p. 452, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  28. B. Wiltshire. “Stress Relaxation Measurements of Aluminum Conductors in Insulation Displacement Connectors (IDC) and Related Effects on Contact Resistance, Electrical Contacts 1983,” Proceedings of the Twenty-Ninth Annual Meeting of the Holm Conference on Electrical Contacts, pp. 211–221, 1983.

    Google Scholar 

  29. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., Springer-Verlag, Berlin, 1967.

    Google Scholar 

  30. J. Lee, L.-C. Chin, and C. Hu. “Statistical Modeling of Silicon Dioxide Reliability,” 26th Ann. Proc. Reliability Physics, pp. 131–138, 1988.

    Google Scholar 

  31. MIL-E-5400. “Aerospace General Specification for Electronic Equipment.” U. S. Government Printing Office, Washington, DC, 1992.

    Google Scholar 

  32. T. C. May and M. H. Woods. “A New Physical Mechanism for Soft Errors in Dynamic Memories,” pp. 33–40, 1978.

    Google Scholar 

  33. T. C. May and M. H. Woods. “A New Physical Mechanism for Soft Errors in Dynamic Memories,” IEEE Trans. Electron Devices, ED-26(1): pp. 2–9, 1979.

    Article  Google Scholar 

  34. T. C. May. “Soft Errors in VLSI: Present and Future,” 29th Electronic Components Conference, pp. 247–256, 1979.

    Google Scholar 

  35. C. A. Handwerker, P. A. Morris, R. L. Coble, D. R. Gabe, and R. T. Howard “Characterization of Low Alpha Particle Emitting Ceramics,” 34th Electronic Components Conference, pp. 453–457, 1984.

    Google Scholar 

  36. M. L. White, J. W. Serpiello, and K. M. Striny. “The Use of Silicon Rubber for Alpha Particle Protection on Silicon Integrated Circuits,” 19th Reliability Physics Symposium, pp. 43–47, 1981.

    Google Scholar 

  37. N. Khurama, T. Maloney, and W. Yeh. “ESD on CHMOS Devices—Equivalent Circuits, Physical Models and Failure Mechanisms,” 23rd Reliability Physics Symposium, pp. 212–223, 1985.

    Google Scholar 

  38. I. Doshay. “Reliability Impact of Thermal Design,” Proceedings of the Technical ConferenceIEPS, Fourth Annual International Electronics Packaging Conference, pp. 307–317, 1984.

    Google Scholar 

  39. MIL-STD-883B Method 1018,2. “Test Methods and Procedures for Microelectronics—Internal Water Vapor Content,” U. S. Government Printing Office, Washington, DC., 1980.

    Google Scholar 

  40. R. W. Thomas. “Mass Spectrometric Measurements of Moisture Workshop,” 21st Annual Reliability Physics Symposium, 1983.

    Google Scholar 

  41. D. W. Swanson and J. J. Licari. “Effects of Screen Tests and Burn-In on Moisture Content of Hybrid Microcircuits,” Solid State Tech., 29(9): pp. 125–130, 1986.

    Google Scholar 

  42. I. Memis. “Quasi-Hermetic Seal for IC Modules,” 30th Electronic Components Conference, pp. 121–127, 1980.

    Google Scholar 

  43. J. K. Kuppers. “The Reactivity of Mixtures of Carbon Tetrachloride and Alcohols,” Electrochem, Sci. Tecknol., 125(1): pp. 97–98, 1978.

    Article  Google Scholar 

  44. Positive Drift of AgPd Thick Film Resistors, IBM Federal Systems Division to NASA, 1966-1969.

    Google Scholar 

  45. R. R. Tummala. “Stress Corrosion of a Low Temperature Solder Glass,” Non-Crystalline Solids, 19(1): pp. 263–272, 1975.

    Article  Google Scholar 

  46. H, H. Uhlig. Corrosion and Corrosion Control, p. 146, John Wiley & Sons, New York, 1963.

    Google Scholar 

  47. D. J. Lando, J. P. Mitchell, and T. L. Welsher. “Conductive Anodic Filaments in Reinforced Polymeric Dielectrics: Formation and Prevention,” 17th Annual Proceedings Reliability Physics, p. 39, 1979.

    Google Scholar 

  48. M. Stern and E. Weisert “Experimental Observations on the Relation Between Polarization Resistance and Corrosion Rate,” Proc. Am. Soc. Testing Mater., 59: p. 1280, 1959.

    Google Scholar 

  49. D. A. Jeannotte, J. Roth, L. Hall, J. Steppan, H. Whitlow, B. J. W. Tuin, and S. Carbone. “Metal Migration in Polluted Environments,” NACE Minuteman, Symposium, 1986.

    Google Scholar 

  50. S. Thomas and H. M. Berg. “Micro-Corrosion of Al-Cu Bonding Pads,” 23rd Annual Reliability Physics Symposium, pp. 153–158, 1985.

    Google Scholar 

  51. E. H. Dix, Jr., R. H. Brown, and W. W. Binger. The Resistance of Aluminum Alloys to Corrosion, 8th ed., vol. 1, pp. 916–935, American Society for Metals, Metals Park, OH, 1961.

    Google Scholar 

  52. D. S. Peck and C. H. Zierdt. “Temperature Humidity Acceleration of Metal Electrolysis Failure in Semiconductive Devices,” 11th Annual Reliability Physics Symposium, pp. 146–152, 1973.

    Google Scholar 

  53. S. F. Sim and R. W. Lawson. “The Influence of Plastic Encapsulants and Passivation Layers on the Corrosion of Thin Aluminum Films Subjected to Humidity-Stress,” 17th Annual Reliability Physics Symposium, pp. 103–112, 1979.

    Google Scholar 

  54. W. E. Swartz, J. H. Linn, J. M. Ammons, and M. Kovac. “The Adsorption of Water on Metallic Packages,” 21 st Annual Reliability Physics Symposium, pp. 52–59, 1983.

    Google Scholar 

  55. S. Brunauer, P. H. Emmett, and E. Teller. “Adsorption of Gases in Molecular Layers,” J. Am. Ch. Soc, 60: p. 309, 1938.

    Article  Google Scholar 

  56. D. Kane, M. Brizou, J. Perdrigeat, and R. Gauthier. “Physical Characterization of Surface Conductivity Sensors in the Aim of an Absolute Moisture Measurement in Electronic Components,” 34th Electronic Components Conference, pp. 441–447, 1984.

    Google Scholar 

  57. F. R. Moser and H. C. Barron. “Moisture Measurements in IBM Circuit Packages,” Proc, 32nd Electronic Components Conference, pp. 406–409, 1982.

    Google Scholar 

  58. N. S. Sbar. “Bias Humidity Performance of Encapsulated and Unencapsulated Ti-Pd-Au Thin Film Conductors in an Environment Contaminated with C12,” Proc. 26th Electronic Components Conference, pp. 277–284, 1976.

    Google Scholar 

  59. B. D. Yan, S. L. Melink, G. W. Warren, and P. Wynblatt. “Water Adsorption and Surface Conductivity Measurements on Alumina Substrates,” Proc. 36th Electronic Components Conference, pp. 95–99, 1986.

    Google Scholar 

  60. Handbook of Chemistry and Physics, 59th ed., p. 205, CRC Press, Cleveland, OH, 1978-79.

    Google Scholar 

  61. M. Iannuzzi and R. Kozakiewicz. “Bias Humidity Performance and Failure Mechanisms of Non-Hermetic Aluminum SICs in an Environment Contaminated with SiO2,” Proc. 32nd Electronic Components Conference, pp. 391–400, 1982.

    Google Scholar 

  62. V. Bhide and J. M. Eldridge. “Aluminum Conductor Line Corrosion,” 21st Annual Reliability Physics Symposium, pp. 44–51, 1983.

    Google Scholar 

  63. A. Der Marderosian and C. Murphy. “Humidity Threshold Variations for Dendrite Growths on Hybrid Substrates,” 15th Annual Reliability Physics Symposium, pp. 92–100, 1977.

    Google Scholar 

  64. G. B. Cvijanovich and A. R. Bailey. “’Conductivity and Electrolytic Properties of Adsorbed Layers of Water,” NBS Moisture and Control Symposium Nat’l Bur, of Standards, 1980.

    Google Scholar 

  65. K. M. Striny and A. W. Schelling. “Reliability Evaluation of Aluminum-Metallized MOS Dynamic RAMs in Plastic Packaging in High Humidity and Temperature Environments,” Proc. 31 st Electronic Components Conference, pp. 238–244, 1981.

    Google Scholar 

  66. R. T. Howard. “Packaging Reliability: How to Define and Measure It,” IEEE Trans. Components, Hybrids Manuf. Tech., CHMT-5(4); pp. 454–462, 1982.

    Article  Google Scholar 

  67. R. T. Howard. “Electrochemical Model for Corrosion of Conductors on Ceramic Substrates,” IEEE Trans. Components, Hybrids, Manuf. Tech., CHMT-4(4): pp. 520–525, 1981.

    Article  Google Scholar 

  68. J. J. P. Gagne. “Silver Migration Model for Ag-Au-Pd Conductors,” Proc. 32nd Electronic Components Conference, pp. 214–228, 1982.

    Google Scholar 

  69. J. E. Gunn, R. E. Camenga, and S. K. Malik. “Rapid Assessment of the Humidity Dependence of IC Failure Modes by the HAST Test,” 21st Annual Reliability Physics Symposium, pp. 66–72, 1983.

    Google Scholar 

  70. A. R. Bailey and G. B. Cvijanovich. “Conceptual Model of Aluminum Corrosion on an IC,” NBS Moisture Measurement and Control Symposium Nat’l Bur. of Standards, 1980.

    Google Scholar 

  71. D. Guan, T. Gukelberger, E. Cahoon, T. Joseph, and J. Snowden. “New Failure Mechanisms in Temperature and Humidity Stress,” Proc. 36th Electronic Components Conference, pp. 107–110, 1986.

    Google Scholar 

  72. P. R. Engel, T. Corbett, and W. Baerg. “A New Failure Mechanism of Bond Pad Corrosion in Plastic Encapsulated ICs under Temperature, Humidity, and Bias Stress,” Proc. 33rd Electronic Components Conference, pp. 245–252, 1983.

    Google Scholar 

  73. R. P. Merrett, J. P. Bryant, and R. Studd. “An Appraisal of High Temperature Humidity Stress Tests for Assessing,” 21st Annual Reliability Physics Symposium, pp. 73–82, 1983.

    Google Scholar 

  74. S. Ahmad, R. Blish II, T. Corbett, J. King, and G. Shirley. “Effect of Bromine Concentration in Molding Compounds on Gold Ball Bonds to Aluminum Bonding Pads,” Proc. 36th Electronic Components Conference, pp. 127–131, 1986.

    Google Scholar 

  75. G. Kookootsedes. Informational Presentation to IBM/Burlington, Dow-Corning Co., Midland, MI, 1985.

    Google Scholar 

  76. D. Stroehle. “Influence of Chip Excess Temperature on the Moisture Induced Failure Rate of Plastic-Encapsulated Devices,” Proc. 33rd Electronic Components Conference, pp. 253–259, 1983.

    Google Scholar 

  77. P. DuMoulin, J. P. Seurin, and P. Marce. “Metal Migration Outside the Package During Accelerated Life Tests,” Proc. 32nd Electronic Components Conference, pp. 229–236, 1982.

    Google Scholar 

  78. G. Kahan. “Silver Migration in Glass Dams Between Silver-Palladium Interconnections,” IEEE Trans. Electrical Insulation, E1-10(3): p. 86, 1975.

    Article  Google Scholar 

  79. D. J. Bendz. “Potentiametric Test,” Proc. 26th Electronic Components Conference, pp. 168–172, 1976.

    Google Scholar 

  80. R. W. Thomas. “Moisture, Myths and Mierocircuits,” Proc. 26th Electronic Components Conference, pp. 212–216, 1978.

    Google Scholar 

  81. D. Jaffe. “Encapsulation of Integrated Circuits Containing Beam Leaded Devices with a Silicone RTV Dispersion,” Proc. 26th Electronic Components Conference, pp. 376–381, 1976.

    Google Scholar 

  82. M. L. White. “Encapsulation of Integrated Circuits;” Proc, IEEE, 57(9); pp. 1610–1615, 1969.

    Article  Google Scholar 

  83. M. Iannuzzi. “Evaluation of an Encapsulant Material for Thick Film Resistor Networks Applied to a Thin Film HIC,” Proc. 33rd Electronic Components Conference, pp. 591–601, 1983.

    Google Scholar 

  84. K. Otsuka, Y. Shirai, and K. Okutani. “Sealing Mechanism of Silicone Jelly Encapsulation with High Reliability,” Proc. 34th Electronic Components Conference, pp. 88–94, 1984.

    Google Scholar 

  85. MIL-STD-23586. “Sealing Compound, Electrical Silicone Rubber Accelerator Required,” U. S. Government Printing Office, Washington, DC.

    Google Scholar 

  86. A. P. Viera, P. Boysan, S. Golwalkar, and D. Foehringer. “Attachment Reliability Evaluation and Failure Analysis of Thin Small Outline Packages (TSOP’s),” Proc. 1993 ECTC, pp. 54–61, 1993.

    Google Scholar 

  87. T. S. Gross, J. A. Perault, and D. W. Watt. “An Experimental Investigation of Deformation of Plated Holes for a Single 30-210-30°C Thermal Cycle,” ASME J. Electron. Packaging, 116(1): pp. 1–5, 1994.

    Article  Google Scholar 

  88. A. Mertol. “Effect of Heat Slug and Die Attach Material Properties on Plastic Pin Grid Array (PPGA) Package Stress,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-16(7): pp. 743–751, 1993.

    Article  Google Scholar 

  89. K. Van Doorselaer, and K. de Zeeuw. “Relation Between Delamination and Temperature-Cycling Induced Failures in Plastic Packaged Devices,” Proc. 1990 ECC, pp. 813–817, 1990.

    Google Scholar 

  90. L. T. Nguyen, S. A. Gee, M. R. Johnson, H. E. Grimm, H. Berardi and R. L. Walberg. “Effects of Die Coatings, Mold Compounds and Test Conditions on Temperature Cycling Failures,” Proc. 1994 ECTQ pp. 210–217, 1994.

    Google Scholar 

  91. R. W. Kotlowitz. “Comparative Compliance of Generic Lead Designs for Surface Mounted Components,” Proc. 1987 IEPS, vol. 2, pp. 965–984, 1987.

    Google Scholar 

  92. R. W. Kotlowitz and L. R. Taylor. “Compliance Metrics for the Inclined Gull-Wing, Spider J-Bend and Spider Gull-wing Designs for Surface Mount Components,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-14(4): pp. 771–779, 1991.

    Article  Google Scholar 

  93. L. S. Goldmann. “A Numerical Lead Frame Compliance and Stress Model,” ASME J. Electron. Packaging, 116(1): pp. 23–29, 1994

    Article  Google Scholar 

  94. S. Timoshenko. “Analysis of Bi-Metal Thermostats,” J. Opt. Soc. Am., 11: pp. 233–255, 1925.

    Article  Google Scholar 

  95. E. Suhir. “Stresses in Bimetal Thermostats,” J. Appl. Mech, Vol. 53: pp. 657–660, 1986.

    Article  Google Scholar 

  96. W. T. Chen and C. W. Nelson. “Thermal Stresses in Bonded Joints,” IBM J. Res. DeveL 23(2): pp. 179–188, 1979.

    Article  Google Scholar 

  97. Y.-H. Pao and E. Eisele. “Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading,” ASME J. Electron. Packaging, 113: pp. 164–171, 1991.

    Article  Google Scholar 

  98. T. C. Taylor and F. L. Yuan. “Thermal Stress and Fracture in Shear-Constrained Semiconductor Device Structures,” IRE Trans. Electron. Devices, ED-9: pp. 303–308, 1962.

    Article  Google Scholar 

  99. J. A. Carlson and L. P. Sapetta. “Stresses in Assemblies Bonded with Thermosetting Adhesives,” Adhesives Age, pp. 26–29, Dec. 1967.

    Google Scholar 

  100. E. Suhir. “Calculated Thermally Induced Stresses in Adhesively Bonded and Soldered Assemblies,” Proc. ISHM, pp. 383–392, 1986.

    Google Scholar 

  101. R. G. Ross, Jr. and L. Wen. “Crack Propagation in Solder Joints During Thermal-Mechanical Cycling,” ASME J. Electron. Packaging, 116: pp. 69–75, 1994.

    Article  Google Scholar 

  102. E. P. Busso, M. Kitano, and T. Kumazawa. “Modeling Complex Inelastic Deformation Processes in IC Packages’ Solder Joints,” ASME J. Electron. Packaging, 116: pp. 6–14, 1994.

    Article  Google Scholar 

  103. V. Sarihan. “Temperature Dependent Viscoplastic Simulation of Controlled Collapse Solder Joint Under Thermal Cycling,” ASME J. Electron. Packaging, 115: pp. 16–21, 1993.

    Article  Google Scholar 

  104. S. S. Chiang and R. K. Shukla. “Failure Mechanisms of Die Cracking Due to Imperfect Die Attachment,” Proc. 1984 ECC, pp. 195–202, 1984.

    Google Scholar 

  105. H. S. Morgan. “Thermal Stresses in Layered Electrical Assemblies Bonded With Solder,” ASME J. Electron. Packaging, 113: pp. 350–354, 1991.

    Article  Google Scholar 

  106. J. H. Lau, D. W. Rice., and P. A. Avery. “Electroplastic Analysis of Surface-Mount Solder Joints,” IEEE Trans. Components Hybrids Manuf. Tech., 10(3): pp. 346–357, 1987.

    Article  Google Scholar 

  107. H. U. Akay, Y. Tong, and Y. Paydar. “Thermal Fatigue Analysis of a SMT Solder Joint Using a Nonlinear FEM Approach,” Int. J. Microcircuits Electron. Packaging, 16(2): pp. 79–88, 1993.

    Google Scholar 

  108. B. Ozmat. “A Nonlinear Thermal Stress Analysis of Surface Mount Solder Joints,” Proc. 1990 ECTC, pp. 959–971, 1990.

    Google Scholar 

  109. E. Jih and Y.-H. Pao. “Evaluation of Critical Design Parameters for Surface Mount Leadless Solder Joints Subjected to Thermal Cycling,” Mech. Mater. Electron. Packaging, 1987: pp. 213–228, 1994.

    Google Scholar 

  110. H. K. Charles and G. V. Clatterbaugh. “Solder Joint Reliability: Design Implications from FEM and Experimental Testing,” ASME J. Electron. Packaging, 112: pp. 135–146, 1990.

    Article  Google Scholar 

  111. J. Lau, S. Golwalker, P. Boysan, R. Surratt, D. Rice, R. Fohringer and S. Erasmus. “Solder Joint Reliability of a TSOP,” Proc. 1992 ECTC, pp. 519–532, 1992.

    Google Scholar 

  112. D. B. Barker, I. Sharif, A. Dasgupta, and M. G. Pecht. “Effect of SMT Lead Dimensional Variabilities on Lead Compliance and Solder Joint Fatigue Life,” ASME J. Electron. Packaging, 114: pp. 177–184, 1992.

    Article  Google Scholar 

  113. V. K. Gupta and D. B. Barker. “Influence of Surface Mount Lead End Geometry on Fatigue Life,” ASME J. Electron Packaging, 116: pp. 157–160, 1994.

    Article  Google Scholar 

  114. G. A. Bivens, “Predicting Time-to-Failure Using Finite Element Analysis,” Proc. IEEE Reliability and Maintainability Symposium, pp. 319–322, 1990.

    Google Scholar 

  115. A. R. Syed, B. K. Banerjee, P. K. Bhatti, K. Gschwend, and A. Y. Kwang. “Effect of Temperature Profile Parameters on Creep Strain Response of Solder Joints in Leaded Surface Mount Devices.” Adv. Electron. Packaging, 4-2: pp. 1055–1062, 1993.

    Google Scholar 

  116. R. Darveaux. “Crack Initiation and Growth in Surface Mount Solder Joints,” Proc. SPIE, 2105: pp. 86–97, 1993.

    Google Scholar 

  117. M. M. Keegan, C. M. Bradaigh, D. Kearney, and P. F. Monaghan. “Thermal Fatigue Life Prediction for a Middle Gull-wing Joint Using Finite Element Analysis,” Adv. Electron. Packaging, 4-1: pp. 499–507, 1993.

    Google Scholar 

  118. P. K. Bhatti and K. Gschwend. “Effect of Global and Local CTE Mismatch on Solder Joint Creep in SMT Devices,” Structural Anal. Microelectron. Fiber Optics, 8: pp. 55–63, 1994.

    Google Scholar 

  119. T.-Y. Pan, “Thermal Cycling Induced Plastic Deformation in Solder Joints—Part 1: Accumulated Deformation in Surface Mount Joints,” ASME J. Electron. Packaging, 113: pp. 8–15, 1991.

    Article  Google Scholar 

  120. R. Iannuzelli. “Predicting Plated-Through-Hole Reliability in High Temperature Manufacturing Processes,” Proc. 1991 ECTC, pp. 410–421, 1991.

    Google Scholar 

  121. S. M. Bhandarkar, A. Dasgupta, D. Barker, M. Pecht, and W. Engelmaier, “Influence of Selected Design Variables on Thermo-Meehanical Stress Distributions in Plated-Through-Hole Structures.” ASME J. Electron. Packaging, 114: pp. 8–13, 1992.

    Article  Google Scholar 

  122. T.-Y. Pan. “Thermal Cycling Induced Plastic Deformation in Solder Joints—Part II: Accumulated Deformation in Through Hole Joints,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-14(4): pp. 824–832, 1991.

    Article  Google Scholar 

  123. M. DiOrio and S. Pinamaneni. “Material Effects on the Performance and Reliability of high-Power Molded Dual-in-Line Packages,” Proc. 1988 ECC, pp. 406–410, 1988.

    Google Scholar 

  124. J. H. Lau, D. W. Rice, and C. G. Harkins. “Thermal Stress Analysis of TAB Packages and Interconnections,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-13(1): pp. 182–187, 1990.

    Article  Google Scholar 

  125. K. D. Cluff. “Analysis of TAB Inner Lead Fatigue in Thermal Cycle Environments,” Proc. 1994 ECTC, pp. 474–480, 1994.

    Google Scholar 

  126. J. Lee and D. Caletka. “TSOP Encapsulation Reliability Modeling.” Adv. Electron. Packaging, 4-2: pp. 1135–1141, 1993.

    Google Scholar 

  127. A. Mertol. “Effect of Heat Slug and Die Attach Material Properties on Plastic Pin Grid Array (PPGA) Package Stress,” IEEE Trans. Components Hybrids Manuf. Tech., 16(7): pp. 743–751, 1993.

    Article  Google Scholar 

  128. J. S. Hunter. “Design and Analysis of Experiments,” Juran’s Quality Control Handbook, 4th ed., ed. by J. M. Juran, McGraw-Hill, New York, 1988.

    Google Scholar 

  129. A. Y. Kwang, K. Gschwend, and B. Bannerjee, “Methodology for Response Surface Representation of Low Cycle Fatigue Behavior of PLCC and PQFP Surface Mount Devices,” Structural Anal. Microelectron. Fiber Optics, 8: pp. 47–53, 1994.

    Google Scholar 

  130. J. M. Hu, M. Pecht, and A. Dasgupta. “A Probabilistic Approach for Predicting Thermal Fatigue Life of Wire Bonding in Microelectronics,” ASME J. Electron. Packaging, 113: pp. 275–285, 1991.

    Article  Google Scholar 

  131. R. Y. Rubenstein. Simulation and the Monte Carlo Method, Wiley, New York, 1981.

    Book  Google Scholar 

  132. R. G. Bayer. ”A New Model for Accelerated Thermal Cycle Testing With Application to TAB Leads and PCB PTHs,” ASME J. Electron. Packaging, 116: pp. 16–22, 1994.

    Article  Google Scholar 

  133. T.-H. Ju, W. Lin, Y. C. Lee, and J. J. Lin. “Effects of Ceramic BGA Package Manufacturing Variations on Solder Joint Reliability”, ASME J. Electron. Packaging, 116: pp. 242–248, 1994.

    Article  Google Scholar 

  134. J. H. Huang. “A Study of the Failure of SMT Solder Joints Under Thermal Cycling by Statistics,” Microelectron. Reliab., 32(10), pp. 1349–1352, 1992.

    Article  Google Scholar 

  135. P. M. Hall. “Forces, Moments and Displacements During Thermal Chamber Cycling of Leadless Ceramic Chip Carriers Soldered to Printed Boards,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-7(4): pp. 314–327, 1984.

    Article  Google Scholar 

  136. R. J. Usell and S. A. Smiley. “Experimental and Mathematical Determination of Mechanical Strains Within Plastic IC Packages and their Effect on Devices During Environmental Tests,” Proc. Reliability Physics Symposium, pp. 65–73, 1981.

    Google Scholar 

  137. W. H. Schroen, J. L. Spencer, J. A. Bryan, R. D. Cleveland, T. D. Metzgar and D. R. Edwards. “Reliability Tests and Stress in Plastic Integrated Circuits,” Proc. Reliability Physics Symposium, pp. 81–87, 1981.

    Google Scholar 

  138. D. A. Bittle, J. C. Suhling, R. E. Beaty, R. C. Jaeger, and R. W. Johnson. “Piezoresis-tive Stress Sensors for Structural Analysis of Electronic Packages,” ASME J. Electron. Packaging, 113: pp. 203–215, 1991.

    Article  Google Scholar 

  139. H. Miura, M. Kitano, A. Nishirnura, and S. Kawai, “Thermal Stress Measurement in Silicon Chips Encapsulated in IC Packages Under Temperature Cycling,” ASME J. Electron. Packaging, 115: pp. 9–13, 1993.

    Article  Google Scholar 

  140. H. C. J. M. van Gestel, L. van Gemert, and E. Bagerman. “On-Chip Piezoresistive Stress Measurement and 3D Finite Element Simulations of Plastic DIL 40 Packages Using Different Materials,” Proc, 1993 ECTC, pp. 124–133, 1993.

    Google Scholar 

  141. R. C. Jaeger, J. C. Suhling, M. T. Carey, and R. W. Johnson. “A Piezoresistive Sensor Chip for Measurement of Stress in Electronic Packaging,” Proc. 1993 ECTC, pp. 686–692, 1993.

    Google Scholar 

  142. J. N. Sweet, D. W. Peterson, and J. A. Emerson. “Liquid Encapsulant and Uniaxial Calibration Mechanical Stress Measurement with the ATC04 Assembly Test Chip,” Proc. 1994 ECTC, pp. 750–756, 1994.

    Google Scholar 

  143. B. Han. “Higher Sensitivity Moire Interferometry for Micromechanics Studies,” Opt. Eng. 31(7): pp. 1517–1526, 1992.

    Article  Google Scholar 

  144. Y. Guo, C. K. Lim, W. T. Chen., and C. G. Woychik, “Solder Ball Connect Assemblies Under Thermal Loading: I. Deformation Measurement Via Moire Interferometry and Its Interpretation,” IBM J. Res. Devel. 37(5): pp. 635–648, 1993.

    Article  Google Scholar 

  145. A. F. Bastawros and A. S. Voloshin. “Direct Thermal Strain Measurements in Electronic Packages,” Proc. IEEE Sixth Annual Semiconductor Thermal and Temperature Measurement Symp., pp. 25–32, 1990.

    Google Scholar 

  146. P.-H. Tsao and A. S. Voloshin. “Manufacturing Stresses in Die Due to Die Attach Process,” Proc. 1994 ECTC, pp. 255–259, 1994.

    Google Scholar 

  147. R. W. Jenkins and M. C. McIlwain. “Holographic Analysis of Printed Circuit Boards.” Mat. Eval. pp. 199–204, September 1971.

    Google Scholar 

  148. M. Taniguchi and T. Takagi. “Thermal Deformation Analysis on Printed Circuit Board by Means of Holographic Technique,” Proc. IEEE International Symp, on Electromagnetic Compatibility, p. 807, 1994.

    Google Scholar 

  149. C. A. Sciammarella. “The Moire Method—A Review,” Exper. Mech., pp. 418–433, November 1982.

    Google Scholar 

  150. Y. Guo, private communication.

    Google Scholar 

  151. C. K. Lim. “Micromechanical/Nanomechanical Verification Tools for Modeling and Simulation for Electronics Packaging”, Proa IEEE—CPMT/NIST Packaging Workshop, 1993.

    Google Scholar 

  152. H.-C. Choi, Y. Guo, W. LaFontaine, and C. K. Lim. “Solder Ball Connect Assemblies Under Thermal Loading: II. Strain Analysis Via Image Processing, and Reliability Considerations,” IBM J. Res. Devel. 37(5): pp. 649–659, 1993.

    Article  Google Scholar 

  153. Y. Guo. “Applications of Shadow Moire Method in Determination of Thermal Deformations in Electronic Packaging,” Society for Experimental Mechanics, Proc. 1995 SEM Spring Conf., pp. 702–708, 1995.

    Google Scholar 

  154. K. M. Liechti. “Residual Stresses in Plastically Encapsulated Microelectronic Devices,” Exper. Mech., pp. 226–231, September 1985.

    Google Scholar 

  155. D. L. Davidson, “Stereoimaging Determination of Strains in Surface Mounted Components and Plated Through Holes Resulting From Thermal Cycling,” Material Research Soc., Proc. Mechanical Behavior of Materials and Structures in Microelectronics Symposium, pp. 357–361, 1991.

    Google Scholar 

  156. E. Levine and J. Ordonez. “Analysis of Thermal Cycle Fatigue Damage in Micro-socket Solder Joints,” Proc. 1981 ECC, pp. 515–519, 1981.

    Google Scholar 

  157. T. J. Kilinski, D. P. Goetsch, and B. I. Sandor. “Fatigue Damage Evaluation of SMT Interconnections Using Straddle Boards,” Proc. 1991 ECTC, pp. 313–319, 1991.

    Google Scholar 

  158. R. Dudek and B. Michel. “Therrnomechanieal Reliability Assessment in Surface Mount and Chip-on-Board Technology by Combined Experimental and Finite Element Method,” Proc. 1994 IEEE International Reliability Physics Symposium, pp. 458–465, 1994.

    Google Scholar 

  159. MIL-STD-883D, Method 1010.7: “Temperature Cycling,” 29 May 1987.

    Google Scholar 

  160. N. Nir, T. D. Dudderar, C. C. Wong, and A. R. Storm, “Fatigue Properties of Microelectronics Solder Joints,” ASME J. Electron, Packaging, 113: pp. 92–101, 1991.

    Article  Google Scholar 

  161. H. D. Solomon. “Low Cycle Fatigue of Surface Mounted Chip Carrier/Printed Wiring Boards,” Proc. 1989 ECC, pp. 277–292, 1989.

    Google Scholar 

  162. C. G. Schmidt, “A Model for the Low-Cycle Fatigue of Surface Mount Solder Joints,” Proc. 1991 ECTC, pp. 677–681, 1991.

    Google Scholar 

  163. Y. Uegai, S. Tani, A. Inoue, S. Yoshioka, and K. Tamura. “Method of Fatigue Life Prediction for Surface Mount Solder Joints of Electronic Devices by Mechanical Fatigue test,” Adv. Electron, Packaging, 4-1: pp. 493–498, 1993.

    Google Scholar 

  164. H. Doi, K. Kawano, R. Minamitani, T. Hatsuda, and T. Hayashida. “Development of Mechanical Fatigue Test method for Flip-Chip Solder Joints,” Proc, 1992 ECTC, pp. 167–170, 1992.

    Google Scholar 

  165. L. D. Lauer. “Dynamic Mechanical Testing of Solder and Solder Joints,” Circuit World, 132(1): pp. 13–17, 1986.

    Article  Google Scholar 

  166. J. K. Tien and A. I. Attarwala. “Complications in Life Prediction Estimates at Elevated Temperatures in Lead/Tin Solders During Accelerated Cycling,” Proc. 1991 ECTC, pp. 667–670, 1991.

    Google Scholar 

  167. D. R. Frear. “Thermomechanical Fatigue of Solder Joints: A New Comprehensive Test Method,” Proc. 1989 ECC, pp. 293–300, 1989.

    Google Scholar 

  168. Q. Guo, E. C. Cutiongco, L. M. Keer, and M. E. Fine. “Thermomechanical Fatigue Life Prediction of 63Sn/37Pb Solder,” ASME J. Electron. Packaging, 114: pp. 145–151, 1992.

    Article  Google Scholar 

  169. P. M. Hall. “Creep and Stress Relaxation in Solder Joints in Surface-Mounted Chip Carriers,” Proc. 1987 ECC, pp. 579–587, 1987.

    Google Scholar 

  170. R. Darveaux and EL Bannerji, “Fatigue Analysis of Flip Chip Assemblies Using Thermal Stress Simulations and a Coffin-Manson Relation,” Proc. 1991 ECTC, pp. 797–804, 1991.

    Google Scholar 

  171. S. S. Manson. Thermal Stress and Low Cycle Fatigue, McGraw-Hill, New York, 1966.

    Google Scholar 

  172. J. R. Ellis and E. P. Esztergar. “Considerations of Creep-Fatigue Interaction in Design Analysis,” ASME Symp. on Design for Elevated Temperature Environment, pp. 29–43, 1971.

    Google Scholar 

  173. S, Knecht and L. R. Fox. “Constitutive Relation and Creep-Fatigue Life Model for Eutectic Tin-Lead Solder,” IEEE Trans, Components Hybrids Manuf. Tech., CHMT-13(2): pp. 424–432, 1990.

    Article  Google Scholar 

  174. D. O. Ross. “The Creep of Sn60 Solder and Its Impact on Leadless Chip Carriers,” Proc. 1984 IEPS, pp. 181–187, 1984.

    Google Scholar 

  175. R. N. Wild. “Some Fatigue Properties of Solder and Solder Joints,” Proc. NEPCON, pp. 105–117, 1974.

    Google Scholar 

  176. L. S. Goldmann, R. J. Herdzik, N. G. Koopman, and V. C. Marcotte. “Lead Indium for Controlled Collapse Chip Joining, IEEE Trans. Parts, Hybrids and Packaging, PHP-13(3): pp. 194–197, 1977.

    Article  Google Scholar 

  177. P. Hacke, A. F. Sprecher, and H. Conrad. “Computer Simulation of Thermo-Mechanical Fatigue of Solder Joints Including Microstructure Coarsening,” ASME J. Electron. Packaging, 115: pp. 153–158, 1993.

    Article  Google Scholar 

  178. J. K. Tien, B. C. Hendrix, P. L. Bretz, and A. I. Attarwala. “Creep-Fatigue Interaction in Solders,” Proc. 1989 ECC, pp. 259–263, 1989.

    Google Scholar 

  179. M. C. Shine, L. C. Fox, and J. W. Sofia. “A Strain Range Partitioning Procedure for Solder Fatigue,” Proc. 1984 IEPS, pp. 346–359, 1984.

    Google Scholar 

  180. H. D. Solomon, “The Solder Joint Fatigue Life Acceleration Factor,” ASME J, Electron. Packaging, 113: pp. 186–190, 1991.

    Article  Google Scholar 

  181. J. H. Huang, Y. H. Jiang, and Y. Y. Qian. “Influence of Dwell Time on Reliability of SMT Solder Joints Under Thermal Cycling,” Microelectron. Reliab., 34(5): pp. 897–904, 1994.

    Article  Google Scholar 

  182. J. F. Eckel. “The Influence of Frequency on Repeated Bending Life of Acid Lead,” Proc. ASTM, 51, pp. 745–756, 1951.

    Google Scholar 

  183. K. C. Norris and A. H. Landzberg. “Reliability of Controlled collapse Interconnections,” IBM J. Res. Devel., 13(3): pp. 266–271, 1969.

    Article  Google Scholar 

  184. P. Lin, J. Lee, and S. Im. “Design Considerations for a Flip Chip Joining Technique,” Solid State Technol., pp. 48–54, 1970.

    Google Scholar 

  185. W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Trans. Parts, Hybrids and Packaging, CHMT-6(3): pp. 232–237, 1983.

    Google Scholar 

  186. S. Vaynman, M. E. Fine, and D. A. Jeannotte. “Predictions of Fatigue Life of Lead Based Low Tin Solder,” Proa 1987 ECC, pp. 598–603, 1987.

    Google Scholar 

  187. L. R. Fox, J. W. Sofia, and M. C. Shine. “Investigation of Solder Fatigue Acceleration Factors,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-4(2); pp. 275–285, 1985.

    Article  Google Scholar 

  188. M. Ohshirna, A. Kenmotsu, and I. Ishi. “Optimization of Micro Solder Reflow Bonding for the LSI Flip Chip,” Proc. 1982 IEPC, pp. 481–488, 1982.

    Google Scholar 

  189. J. K. Hagge. “Predicting Fatigue Life of Leadless Chip Carriers Using Manson-Coffin Equations,” Proc. 1982 IEPS, pp. 199–208, 1982.

    Google Scholar 

  190. T. Takenama, F. Kobayashi, and T. Netsu. “Reliability of Flip-Chip Interconnections,” Proc. 1984 ISHM, pp. 419–423, 1984.

    Google Scholar 

  191. J. S. Corbin. “Finite Element Analysis for Solder Ball Connect (SBC) Structural Design Optimization,” IBM J. Res. Devel., 37(5): pp. 585–596, 1993.

    Article  Google Scholar 

  192. J. C. Suhling, R. W. Johnson, J. D. White, K. W. Matthai, and R. W. Knight. “Solder joint Reliability of Surface Mount Chip Resistors/Capacitors on Insulated Metal Substrates,” Proc. 1994 ECTC, pp. 465–472, 1994.

    Google Scholar 

  193. C. M. L. Wu. “Thermal Fatigue Analysis of Surface Mounted Solder Joints,” ASME Petroleum Div. Publ. 64(8): pp. 667–671, 1994.

    Google Scholar 

  194. J. Sauber and J. Seyyedi. “Predicting Thermal Fatigue Lifetimes for SMT Solder Joints,” ASME J. Electron. Packaging, 114: pp. 472–476, 1992.

    Article  Google Scholar 

  195. R. Iannuzzelli. “Predicting Solder Joint Reliability—Model Validation,” Proc. 1993 ECTC, pp. 839–851, 1993.

    Google Scholar 

  196. R. Darveaux and K. Bannerji. “Constitutive Relations for Tin-Based Solder Joints,” IEEE Trans. Components Hybrid Manuf. Tech., CHMT-15(6): pp. 1013–1024, 1992.

    Article  Google Scholar 

  197. S. S. Manson, G. R. Halford, and M. H. Hirschberg. “Creep-Fatigue Analysis by Strain Range Partitioning,” Proc. ASME Symp. on Design for Elevated Temperature Environment, pp. 12–28, 1971.

    Google Scholar 

  198. W. J. Ostergren and E. Krempl. “A Uniaxial Damage Law for Time-Varying Loading Including Creep-Fatigue Interaction,” Trans. ASME, 101: pp. 118–124, 1979.

    Article  Google Scholar 

  199. D. A. Jeannotte, L. S. Goldmann, and R. T. Howard. “Package Reliability: Thermal Mismatch and Thermal Fatigue,” in Microelectronics Packaging Handbook, edited by R. R. Tummala and E. J. Rymaszewski, Van Nostrand Reinhold, New York, pp. 277–320, 1989.

    Google Scholar 

  200. A. Dasgupta, C. Oyan, D. Barker, and M. Pecht. “Solder Creep-Fatigue Analysis by an Energy-Partitioning Approach,” ASME J. Electron. Packaging. 114: pp. 152–160, 1992.

    Article  Google Scholar 

  201. S. Verma, A. Dasgupta, and D. Barker. “A Numerical Study of Fatigue Life of J-Leaded Solder Joints Using the Energy Partitioning Approach,” ASME J. Electron, Packaging, 115: pp. 416–423, 1993.

    Article  Google Scholar 

  202. T. Bui-Quoc. “Cyclic Stress, Strain and energy Variations Under Cumulative Damage Tests in Low-Cycle Fatigue,” Testing Eval., 1(1): pp. 58–64, 1973.

    Article  Google Scholar 

  203. P. H. Wilsching and J. E. Kempert, “Models That Predict Fatigue,” Machine Design, pp. 65–69, July 8, 1976.

    Google Scholar 

  204. W. J. Ostergren. “A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature Low Cycle Fatigue,” Testing Eval., 4(5): pp. 327–339, 1976.

    Article  Google Scholar 

  205. V. Sarihan. “Energy Based Methodology for Damage and Life Prediction of Solder Joints Under Thermal Cycling,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-Part B-17(4): pp. 626–631, 1994.

    Article  Google Scholar 

  206. J.-P. Clech, J. C. Manock, D. M. Noctor, F. E. Bader, and J. A. Augis. “A Comprehensive Surface Mount Reliability Model (CSMR) Covering Several Generations of Packaging and Assembly Technology,” Proc. 1993 ECTC, pp. 62–70, 1993.

    Google Scholar 

  207. W. E. Jahsrnan, M. J. Lii, and T. A. Renfro. “Dependence of Solder Joint Reliability on Lead Displacement Amplitude and Frequency,” Proc. ASME WAM, paper 93-WA-EEP-6, pp. 1–9, 1993.

    Google Scholar 

  208. S. Vaynman and S. A. McKeown. “Energy-Based Methodology for the Fatigue Life Prediction of Solder Materials,” IEEE Trans. Components Hybrids Manuf. Tech., 16(3): pp. 317–332, 1993.

    Article  Google Scholar 

  209. A. S. Tetelman and A. J. McEvily. “The Mechanics of Fracture,” Fracture of Structural Materials, Wiley, New York, 1967.

    Google Scholar 

  210. J. Schaffer, A. Saxena, S. Antolovich, T. Sanders and S. Warner. The Science and Design of Engineering Materials, Irwin, New York, 1995, Chapter 9.

    Google Scholar 

  211. D. L. Davidson, C. F. Popelar, M, F. Kanninen, D. O. Harris, R. A. Sire, L. B. Duncan, J. M. Kallis, D. W. Buechler and I. C. Chen. “Application of Fracture Mechanics to Plated-Through-Hole Thermal Cycle Fatigue,” ASME WAM, paper 91-WA-EEP-11, 1991.

    Google Scholar 

  212. Z. Guo and H. Conrad. “Fatigue Crack Growth Rates in 63Sn37Pb Solder Joints,” ASME J. Electron. Packaging, 115: pp. 159–164, 1993.

    Article  Google Scholar 

  213. D. P. H. Hasselman, R. Badaliance, and E. P. Chen. “Thermal Fatigue and Its Failure Prediction for Brittle Ceramics,” in Thermal Fatigue of Materials and Components, ed. by D. A. Spera and D. F. Mowbray, ASTM, Philadelphia, pp. 55–68, 1976.

    Chapter  Google Scholar 

  214. R. Subrahmanyan, J. R. Wilcox, and C.-Y. Li. “A Damage Integral Approach to Solder Joint Fatigue,” Proc. ASM Electronic Packaging Conf.—Materials and Processes, 1989

    Google Scholar 

  215. B. Wong and D. E. Helling, “Mechanistic Model for Solder Joint Failure Prediction Under Thermal Cycling,” ASME J. Electron, Packaging, 112: pp. 104–109, 1990.

    Article  Google Scholar 

  216. Y.-H. Pao, “A Fracture Mechanics Approach to Thermal Fatigue Life Prediction of Solder Joints,” IEEE Trans. Components Hybrid Manuf. Tech., CHMT-15(4): pp. 559–570, 1992.

    Article  Google Scholar 

  217. S. H. Ju, B. I. Sandor, and M. E. Plesha. “Life Prediction of Solder Joints by Damage and Fracture Mechanics,” in Structural Analy. Microelectron. Fiber Optics, pp. 105–111, 1993.

    Google Scholar 

  218. Y.-H. Pao, R. Govila, S. Badgley, and E. Jih. “An Experimental and Finite Element Study of Thermal Fatigue Fracture of PbSn Solder Joints,” ASME J. Electron. Packaging, 115: pp. 1–8, 1993.

    Article  Google Scholar 

  219. M. Harada and R. Satoh. “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Micro-Bonding,” Proc. 1990 ECTC, pp. 510–517, 1990.

    Google Scholar 

  220. T.-Y. Pan. “Critical Accumulated Strain Energy (Case) Failure Criterion for Thermal Cycling Fatigue of Solder Joints,” ASME J. Electron. Packaging, 116: pp. 163–170, 1994.

    Article  Google Scholar 

  221. K. C. Norris and A. H. Landzberg, “Reliability of Controlled Collapse Interconnections,” IBM J. Res. Devel., 13(3): pp. 266–271, 1969.

    Article  Google Scholar 

  222. J.-P. M. Clech, D. M. Noctor, J. C. Manock, G. W. Lynott, and E E. Bader. “Surface Mount Assembly Failure Statistics and Failure Free Time,” Proc. 1994 ECTC, pp. 487–497, 1994.

    Google Scholar 

  223. E. Nicewarmer. “Historical Failure Rate Distribution and Significant Factors Affecting Surface Mount Solder Joint Fatigue Life,” Solder Surface Mount Technol., 17, pp. 22–29, 1994.

    Article  Google Scholar 

  224. D. R. Olsen and H. M. Berg. “Properties of Die Bond Alloys Relating to Thermal Fatigue,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-2(2): pp. 257–263, 1979.

    Article  Google Scholar 

  225. E. Cassel and G. K. Nieh, cited in “Silver Paste Glass: A Reliable Alternative to Gold Eutectic,” Semiconductor International, Oct. 1988, p. 38.

    Google Scholar 

  226. L. T. Nguyen, S. A. Gee, M. R. Johnson, H. E. Grimm, H. Berardi, and R. L. Walberg. “Effects of Die Coatings, Mold Compounds and Test Conditions on Temperature Cycling Failures,” Proc. 1994 ECTC, pp. 210–217, 1994.

    Google Scholar 

  227. K. Ramakrishna, T. Y. Wu, and E. M. Mockensturm. “Effect of Solder Thickness on Mechanical Reliability of Die-Bonded Chip Package During Chip Encapsulation and Accelerated Thermal Cycling,” Structural Anal. Microelectron. Fiber Optics, pp. 13–27, 1993.

    Google Scholar 

  228. K. Van Doorselaer and K. de Zeeuw. “Relation Between Delamination and Temperature-Induced Failures in Plastic Packaged Devices,” Proc. 1990 ECC, pp. 813–817, 1990.

    Google Scholar 

  229. J. Uebbing. “Mechanisms of Temperature Cycle Failure in Encapsulated Optoelectronic Devices,” Proc. 1981 IRPS, pp. 149–156, 1981.

    Google Scholar 

  230. E. Suhir. “Die Attachment Design and Its Influence on the Thermally Induced Stresses in the Die and the Attachment,” Proc. 1987 ECC, pp. 508–517, 1987.

    Google Scholar 

  231. C. G. M. van Kessel, S. A. Gee, and J. J. Murphy. “The Quality of Die-Attachment and Its Relationship to Stresses and Vertical Die-Cracking,” Proc. 1983 ECC, pp. 237–244, 1983.

    Google Scholar 

  232. K. Ramakrishna, J. C. Lo, and Y. Guo. “An Assessment of Mechanical Reliability of a Die-Bonded Chip Package During Chip Encapsulation and Accelerated Thermal Cycling,” Proc. 1993 ECTC, pp. 670–678, 1993.

    Google Scholar 

  233. R. K. Shukla and N. P. Mencinger. “A Critical Review of VLSI Die-Attachment in High Reliability Applications,” Solid State Technol., pp. 67–74, 1985.

    Google Scholar 

  234. A. J. Yerman, J. F. Burgess, R. O. Carlson, and C. A. Neugebauer. “Hot Spots Caused by Voids and Cracks in the Chip Mountdown Medium in Power Semiconductor Packaging,” IEEE Trans, Components Hybrids Manuf. Tech., CHMT-6(4): pp. 473–479, 1983.

    Article  Google Scholar 

  235. J. F. Burgess, R. O. Carlson, H. H. Glascock, C. A. Neugebauer, and H. F. Webster. “Solder Fatigue Problems in Power Packages,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-6(4): pp. 405–410, 1984.

    Article  Google Scholar 

  236. K. S. Tan and D. Bose. “Rapidly Solidified Solder Foil for Die Attachment Application,” Solid State Technol. pp. 165–168, 1986.

    Google Scholar 

  237. L. S. Goldmann and P. A. Totta. “Area Array Solder Interconnections for VLSI,” Solid State Technology, pp. 91–97, 1983.

    Google Scholar 

  238. L. S. Goldmann. “Geometric Optimization of Controlled Collapse Interconnections,” IBM J. Res. Devel., 13(3): pp. 251–265, 1969.

    Article  Google Scholar 

  239. P. A. Tobias, N. A. Sinclair, and A. S. Van. “The Reliability of Controlled-Collapse Solder LSI Interconnections,” Proc, ISHM, pp. 360–363, 1976.

    Google Scholar 

  240. T. Kamei, M. Nakamura, H. Ariyoshi, and M. Doken, “Hybrid IC Structures Using Solder Reflow Technology,” Proc. 1978 ECC, pp. 172–182, 1978.

    Google Scholar 

  241. P. Borgesen, C.-Y. Li, and H. D. Conway. “Mechanical Design Considerations for Area Array Solder Joints,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-16(3): pp. 272–283, 1993.

    Article  Google Scholar 

  242. T. Hatsuda, H. Doi, S. Sakata, and T. Hayashida. “Creep Behavior of Flip-Chip Solder Joints,” ASME WAM, paper 92-WA-EEP-8, 1992.

    Google Scholar 

  243. K. Takeda, M. Harada, T. Fujita, and T. Inoue. “LSI Packaging Technology for Mainframe Computers,” IEEE Trans. Vol. E, 74(8): pp. 2337–2243, 1991.

    Google Scholar 

  244. L. S. Goldmann. “A Heuristic Force-Height Equation for Molten Axisymmetric Solder Joints”, Proc. 1993 ECTC, pp. 1120–1124, 1993.

    Google Scholar 

  245. R. H. Katyl and W. T. Pimbley. “Shape and Force Relationships for Molten Axisymmetric Solder Connections,” ASME J. Electron. Packaging, 114: pp. 336–341, 1992.

    Article  Google Scholar 

  246. L. S. Goldmann and P. A. Totta. “Chip-Level Interconnect: Solder Bumped Flip Chip,” in Chip on Board: Technologies for Multichip Modules, ed. by J. H. Lau, Van Nostrand Reinhold, New York, 1994.

    Google Scholar 

  247. R. Satoh, M. Ohshima, H. Komura, I. Ishi, and K. Serizawa. “Development of a New Micro-Solder Bonding method for VLSIs,” Proc, 1983 IEPS, pp. 455–461, 1983.

    Google Scholar 

  248. P. T. C. Lin and E. M. Winter. “Flip Chip Module With Non-Uniform Connector Joints,” U. S. Patent 3,871,015 (1975).

    Google Scholar 

  249. N. Matsui, S. Sasaki and T. Ohsaki, “VLSI Chip Interconnection Technology Using Stacked Solder Bumps,” Proc. 1987 ECC, pp. 573–578, 1987.

    Google Scholar 

  250. R. T. Howard. “Optimization of Indium-Lead Alloys for Controlled Collapse Chip Connection Application,” IBM J. Res. Devel., (3): pp. 372–389, 1982.

    Article  Google Scholar 

  251. W. Roush and J. S. Jaspal. “Thermomigration in Lead-Indium Solder,” Proc. 1982 ECC, pp. 342–345, 1982.

    Google Scholar 

  252. G. Derman. “Lead-free Solder Legislation,” Electronic Engineering Times, September 21, 1992, p. 58.

    Google Scholar 

  253. H. Mavoosi and J. Chin. “Reliability Lifetime Prediction and Accelerated Testing of Prospective Alternatives to Lead Based Solders,” Proc. 1995 ECTC, pp. 990–997, 1995.

    Google Scholar 

  254. Y.-H. Pao, S. Badgley, E. Jih, R. Covila, and J. Browning. “Constitutive Behavior and Low Cycle Thermal Fatigue of 97Sn-3Cu Solder Joints,” ASME J. Electron. Packaging, 115(2): pp. 147–152, 1993.

    Article  Google Scholar 

  255. H. M. Tong, L. Mok, K. R. Grebe, H. L. Yeh, K. K. Srivastava, and J. T. Coffin. “Parylene Encapsulation of Ceramic Packages for Liquid Nitrogen Application,” Proc. 1990 ECTC, pp. 345–350, 1990.

    Google Scholar 

  256. D. Suryanarayana, R. Hsaio, T. P. Gall, and J. M. McCreary. “Enhancement of Flip-Chip Fatigue Life by Encapsulation,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-14(1): pp. 218–223, 1991.

    Article  Google Scholar 

  257. D. W. Wang and K. I. Papathomas. “Encapsulant for Fatigue Life Enhancement of Controlled-Collapse Chip Connection (C4),” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-16(8): pp. 863–867, 1993.

    Article  Google Scholar 

  258. J. Clementi, J. McCreary, T. M. Niu, J. Palomaki, J. Varcoe, and G. Hill. “Flip-Chip Encapsulation on Ceramic Substrates,” Proc, 1993 ECTC, pp. 175–181, 1993.

    Google Scholar 

  259. K. J. Lodge and D. J. Pedder. “The Impact of Packaging on the Reliability of flip Chip Solder Bonded Devices,” Proc. 1990 ECTC, pp. 470–475, 1990.

    Google Scholar 

  260. Z. Guo, A. F. Sprecher, D. Y. Jung, and H. Conrad. “Influence of Environment on the Fatigue of Pb-Sn Solder Joints,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-14(4): pp. 833–837, 1991.

    Article  Google Scholar 

  261. D. Suryanarayana, J. A. Varcoe, and J. V. Ellerson. “Repairability of Underfill Encapsulated Flip-Chip Packages,” Proc. 1995 ECTC, pp. 524–528, 1995.

    Google Scholar 

  262. D. Suryanarayana, T. Y. Wu, and J. A. Varcoe. “Encapsulants Used in Flip-Chip Packages,” Frac. 1993 ECTC, pp. 193–198, 1993.

    Google Scholar 

  263. J. W. Munford. “The Influence of Several Design and Material Variables on the Propensity for Solder Joint Cracking,” IEEE Trans. Parts, Hybrids and Packaging, PHP-11(4): pp. 296–304, 1975.

    Article  Google Scholar 

  264. E. Baker. “Calculation of Thermally Induced Mechanical Stresses in Encapsulated Assemblies,” IEEE Trans. Parts, Hybrids and Packaging, PHP-6(4): pp. 121–128, 1970.

    Google Scholar 

  265. P. A. Engel, C. K. Lim, M. D. Toda, and R. Gjone. “Thermal Stress Analysis of Soldered Pin Connectors for Complex Electronic Modules,” Computers Mech. Eng., pp. 59–69, May, 198

    Google Scholar 

  266. J. Lau, R. Subrahmanyan, D. Rice, S. Erasmus, and C. Li. “Fatigue Analysis of a Ceramic Pin Grid Array Soldered to an Orthotropic Epoxy Substrate, ASME J. Electron. Packaging, 113(2): pp. 138–148, 1991.

    Article  Google Scholar 

  267. Y. Guo and C. G. Woychik. “Thermal Strain Measurements of Solder Joints in Second Level Interconnections Using Moire Interferometry,” ASME J. Electron. Packaging, 114(1): pp. 88–92, 1992.

    Article  Google Scholar 

  268. J. Seyyedi, “Soldered Joint Reliability for Interstitial Pin Grid Array Packages,” Soldering Surface Mount Technol. No. 18, pp. 15–20, October 1994.

    Article  Google Scholar 

  269. H. M. Gonzales. “Component Mounting Methods and Their Effect on Solder Joint Cracking,” Insulation/Circuits, pp. 19–24, October 1977.

    Google Scholar 

  270. B. F. Rothschild and R. P. McCluskey. “Plated-Through-Hole Cracking: Causes and Cures,” Electron. Packaging Product., pp. 114–120, May 1970.

    Google Scholar 

  271. A. Fox. “Mechanical Properties at Elevated Temperatures of CuBath Electroplated Copper for Multilayer Boards,” J. Testing Eval., 4(1): pp. 78–84, 1976.

    Google Scholar 

  272. B. Maynard. “Reliable Plated Through Holes for Rigid Flex Boards,” Electron. Packaging Product., pp. 42–45, September 1988.

    Google Scholar 

  273. W. Engelmaier. “Environmental Stress Screening and Use Environments—Their Impact of Surface Mount Solder Joints and Plated-Through-Hole Reliability,” Proc. 1990 IEPS, pp. 388–397, 1990.

    Google Scholar 

  274. T. Y. Wu, Y. Guo, and W. T. Chen. “Thermal-Mechanical Strain Characterization for Printed Wiring Boards,” IBM J. Res. Devel., 37(5): pp. 621–634, 1993.

    Article  Google Scholar 

  275. N. G. Koopman, T. C. Reiley, and P. A. Totta. “Chip-to-Package Interconnections,” in Microelectronics Packaging Handbook, ed. by R. R. Tummala and E. J. Rymaszew-ski, Van Nostrand Reinhold, New York, pp. 388–389, 1989.

    Google Scholar 

  276. F. J. Dance. “Low Thermal Expansion Rate Clad Metals for Chip Carrier Application,” Proc. 1983 Northcon, pp. 1–5, 1983.

    Google Scholar 

  277. G. C. Wilson and D. S. Kingsiey. “Substrates and Assemblies for Surface Mount Technology,” Proc. Internepcon 1983, vol. 1, pp. 107–107, 1983

    Google Scholar 

  278. W. R. Johannes and W. Johnson. “Controlling the Coefficient of Thermal Expansion of Printed Wiring Boards Using Copper Invar Copper Foil,” Int. J. Microcircuits Electron. Packaging, 17(2): pp. 135–142, 1994.

    Google Scholar 

  279. P. J. Amick. “Reliability Life Testing of CTE Compatible Surface Mount Modules,” Proc. 1993 Nepcon West, vol. 3, pp. 1540–1543, 1993.

    Google Scholar 

  280. J. K. Desch. “Low Thermal Coefficient of Expansion Printed Wiring Boards,” Department of Energy Report DE92013704/XAB, May 1992.

    Google Scholar 

  281. C.-P. Lo. “Keep Solder-Joint Stress in Check,” Electron. Packaging Product., pp. 80–82, May 1989.

    Google Scholar 

  282. J. W. Evans. “An Overview of Thermally Induced Low Cycle Fatigue in Surface Mounted Solder Joints,” Surface Mount Technol., pp. 35–39, Feb. 1989.

    Google Scholar 

  283. W. Engelmaier. “Effects on Power Cycling on Leadless Chip Carrier Mounting Reliability and Technology,” Electron, Packaging Product., pp. 58–63, April 1983.

    Google Scholar 

  284. L. Yunquing, T. Xiangyun, M. Jusheng, and H. Le. “Isothermal Shear Low Cycle Fatigue Behavior of 62Sn 36Pb 2Ag Surface Mount Solder Joints,” Acta Metall. Sin., 30(4): pp. 164–169, 1994.

    Google Scholar 

  285. E. A. Wright and W. M. Wolverton. “The Effect of the Solder Reflow method and Joint Design on the Thermal Fatigue Life of Leadless Chip Carrier Solder Joints,” Proc. 1984 ECC, pp. 149–155, 1984.

    Google Scholar 

  286. E. C. Kubik and T. P. L. Li. “Thermal Shock and Temperature Cycle Effects on Solder Joints of Hermetic Chip Carriers on Copper Thick Films,” Proc. 1982 ISHM, pp. 314–321, 1982.

    Google Scholar 

  287. S. K. Kang and T. G. Ference. “Nickel-alloyed Tin-lead Eutectic Solder for Surface Mount Technology,” J. Mater. Res., 8(5): pp. 1033–1040, 1993.

    Article  Google Scholar 

  288. F. Liotine, Jr. “Surface Mount Solderless Attachment Using Electrically Conductive Polymer Adhesive Technology,” Proc. Surface Mount International, pp. 572–583, 1993.

    Google Scholar 

  289. D. L. Kopp and M. G. Bevan. “Conductive Adhesive Substitutes for Tin Lead Solder,” Proc. 1993 Nepcon West, vol. 3, pp. 1501–1509.

    Google Scholar 

  290. R. K. Govila, E. Jih, Y.-H. Pao, and C. Larner. “Thermal Fatigue Damage in the Solder Joints of Leadless Chip resistors,” ASME J. Electron. Packaging, 116: pp. 83–88, 1994.

    Article  Google Scholar 

  291. J. M. Smeby. “Solder Joint Behavior in HCC/PWB Interconnects,” Proc. 1984 ECC, pp. 117–124, 1984.

    Google Scholar 

  292. S.-M. Lee and D. S. Stone. “Grain Boundary Sliding in Surface Mount Solders During Thermal Cycling,” Proc. 1990 ECTC, pp. 491–495, 1990.

    Google Scholar 

  293. H. D. Solomon, V. Brzozowski, and D. G. Thompson. “Predictions of Solder Joint Fatigue Life,” Proc. 1990 ECTC, pp. 351–359, 1990.

    Google Scholar 

  294. L.-C. Wen and R. G. Ross, Jr. “Comparison of LCC Solder Joint Life Predictions with Experimental Data,” ASME J. Electron. Packaging, 117: pp. 109–115, 1995.

    Article  Google Scholar 

  295. J. K. Lake and R. N. Wild. “Some Factors Affecting Leadless Chip Carrier Solder Joint Fatigue Life” Proc. 28th National SAMPE Symp., pp. 1406–1414, 1983.

    Google Scholar 

  296. D. E. Riemer and J. D. Russell. “The Optimized Solder Bond for Ceramic Chip Carriers on Ceramic Boards,” Proc. 1983 ISHM, pp, 217–222, 1983.

    Google Scholar 

  297. M. K. Shah. “Analysis of Parameters Influencing Stresses in the Solder Joints of Leadless Chip Carriers” ASME J. Electron. Packaging, 112: pp. 147–153, 1990.

    Article  Google Scholar 

  298. A. P. Moore, R. W. Elston, and D. J. Burrows. “Solder Modelling for Surface Mounting Technology, 6(1): pp. 16–24, 1988.

    Google Scholar 

  299. N. Paydar, Y. Tong, and H. U. Akay. “A Finite Element Study of Factors Affecting Fatigue Life of Solder Joints,” ASME J. Electron. Packaging, 116: pp. 265–273, 1994.

    Article  Google Scholar 

  300. F. J. Liotine, Jr. “Solder Volume: A Reliability Comparison,” Surface Mount Technol., pp. 29–31, Sept. 1992.

    Google Scholar 

  301. E. Nicewarner. “Effect of Solder Joint Geometry and Conformai Coating on Surface Mount Solder Joint Fatigue Life,” Proc. 1993 Nepcon East, pp. 207–216, 1993.

    Google Scholar 

  302. H. W. Markstein, “Are SMT Solder Joints Reliable?” Electron. Packaging Product., pp. 66–69, Feb. 1989.

    Google Scholar 

  303. S. Liu and Y. H. Mei. “Effects of Voids and Their Interactions on SMT Solder Joint Reliability,” Solder. Surf. Mount Technol., No. 18, pp. 21–28, Oct. 1994.

    Article  Google Scholar 

  304. D. Salinas and P. Y. Shin. “Stresses in Solder Joints of Electronic Packages,” Naval Postgraduate School Report NPS-ME-92-001, Dec. 1991.

    Google Scholar 

  305. D. E. Reimer, “The Mechanics of Solder Joint Stress Relief by Leads on Surface Mounted Devices,” Proc. 1987 International Symposium on Microelectronics, pp. 603–608, 1987.

    Google Scholar 

  306. J.-P. M. Clech, W. Engelmaier, R. W. Kotlowitz, and J. A. Augis. “Reliability Figures of Merit for Surface-Soldered Leadless Chip Carriers Compared to Leaded Packages,” IEEE Trans. Components Hybrid Manuf. Tech., CHMT-12(4): pp. 449–458, 1989.

    Article  Google Scholar 

  307. K. Gilleo. “Art Polymer Solders the Answer to Lead-Free Assembly?” Surface Mount Technol. pp. 39–45, 1995.

    Google Scholar 

  308. M. J. Tervalon, “Local Mismatches in SM Solder Joint FE Analysis,” Proa 1990 ECTC, pp. 954–956, 1990.

    Google Scholar 

  309. J.-P. M. Clech, F. M. Langerman, and J. A. Augis. “Local CTE Mismatch in SM Leaded Packages: A Potential Reliability Concern,” Proc. 1990 ECTC, pp. 368–375, 1990.

    Google Scholar 

  310. M. Kitano, T. Kumazawa, and S. Kawai, “New Evaluation Method for Thermal Fatigue Strength of Solder Joint.” Adv. Electron. Packaging, 1: pp. 301–308, 1992.

    Google Scholar 

  311. A. R. Syed. “Creep Crack Growth Prediction of Solder Joints During Temperature Cycling—An Engineering Approach,” ASME J. Electron. Packaging, 117: pp. 116–122, 1995.

    Article  Google Scholar 

  312. R. G. Ross, Jr., L. C. Wen, G. R. Mon, and E. Jetter. “Solder Creep-Fatigue Interactions with Flexible Leaded Parts,” ASME J. Electron. Packaging, 114: pp. 185–192, 1992.

    Article  Google Scholar 

  313. J. Balde. “The IEEE Compliant Lead Task Force,” IEEE Trans. Components Hybrids Manuf. Tech., 10(3): pp. 463–469, 1987.

    Article  Google Scholar 

  314. W. E. Jahsman, P. Jain, and D. E. Pope, “Measurement and Modeling of In Situ Lead Stiffness of Surface Mounted Packages,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-14(4): pp. 859–869, 1991.

    Article  Google Scholar 

  315. R.W, Kotlowitz. “Comparative Compliance of Representative Lead Designs for Surface-Mounted Components,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-12(4): pp. 431–448, 1989.

    Article  Google Scholar 

  316. D. M. Noctor, F. E. Bader, A. P. Viera, P. Boysan, S. Golwalker, and D. Foehringer. “Attachment Reliability Evaluation and Failure Analysis of This Small Outline Packages (TSOPs), Proc 1993 ECTC, pp. 54–61, 1993.

    Google Scholar 

  317. J. Seyyedi, “Thermal Fatigue Behavior of Low Melting Point Solder Joints,” Solder. Surface Mount Technol. 13, pp. 26–32, 1993.

    Article  Google Scholar 

  318. K. Felske. “A Stress Relaxation Model for Predicting the Fatigue Life of Leaded Surface Mounted Solder Joints,” Proc. ITHERM II, p. 120, 1990.

    Google Scholar 

  319. W. Engelmaier. “Surface Mount Attachment Reliability of Clip Leaded Ceramic Chip Carrirs on FR-4 Circuit Boards,” IEPS J., 9(4): pp. 3–11, 1988.

    Google Scholar 

  320. A. Emerick, J. Ellerson, J. McCreary, R. Noreika, C. Woychik, and P. Viswanadham. “Enhancement of TSOP Solder joint Reliability Using Encapsulation,” Proc. 1993 ECTC, pp. 187–192, 1993.

    Google Scholar 

  321. J. H. Lau. “A Brief Introduction to Ball Grid Array Technologies.” in Ball Grid Array Technology, ed. by J. Lau, McGraw-Hill, New York, 1995.

    Google Scholar 

  322. G. Kromann, D. Gerke, and W. Huang, “A Hi-Density C4/CBGA Interconnect Technology,” Proc. 1994 ECTC, pp. 22–28, 1994.

    Google Scholar 

  323. R. Darveaux, K. Banerji, A. Mawer, and G. Dody. “Reliability of Plastic Ball Grid Array Assembly,” in Ball Grid Array Technology, ed. by J. Lau, McGraw-Hill, New York, 1995.

    Google Scholar 

  324. J. Houghton. “Capturing Design Advantages of BGAs,” Surface Mount Technol., pp. 36–43, 1994.

    Google Scholar 

  325. S. C. Bolton, A. J. Mawer, and E. Mammo, “Influence of Plastic Ball Grid Array Design/Materials Upon Solder Joint Reliability,” Int. J. Microcircuits Electron. Packaging, 18(2): pp. 109–121, 1995.

    Google Scholar 

  326. K. J. Puttlitz, T. Caulfield, and M. Cole. “Effect of Material Properties on the Fatigue Life of Dual Solder (DS) Ceramic Ball Grid Array (CBGA) Solder Joints,” Proc. 1995 ECTC, pp. 1005–1010, 1995.

    Google Scholar 

  327. Y. Guo, C. K. Lim, W. T. Chen, and C. G. Woychik. “Solder Ball Connect (SBC) Assemblies Under Thermal Loading: I. Deformation Measurement Via Moire Inter-ferometry and Its Interpretation,” IBM J. Res. Devel. 37(5): pp. 635–648, 1993.

    Article  Google Scholar 

  328. H.-C. Choi, Y. Guo, W. LaFontaine, and C. K. Lim, “Solder Ball Connect (SBC) Assemblies Under Thermal Loading: II Strain Analysis Via Image Processing, and Reliability Considerations,” IBM J. Res. Devel., 37(5): pp. 649–660, 1993.

    Article  Google Scholar 

  329. G. Phelan and S. Wang. “Solder Ball Connection Reliability Model and Critical Parameter Optimization,” Proc. 1993 ECTC, pp. 858–862, 1993.

    Google Scholar 

  330. T. H. Ho, J. Y. Lee, R. S. Lee, and A. W. Lin. “Linear Finite Element Stress Simulation of Solder Joints on 225 I/O Plastic BGA Package Under Thermal Cycling,” Proc. 1995 ECTC, pp. 930–936, 1995.

    Google Scholar 

  331. J. S. Hwang. “Reliability of BGA Solder Interconnects, Surface Mount Technol., pp. 14–15, Sept 1994.

    Google Scholar 

  332. M. D. Ries, D. R. Banks, D. P. Watson, and K. G. Hoebner. “Attachment of Solder Ball Connect (SBC) Packages to Circuit Cards,” IBM J. Res. Devel., 37(5): pp. 597–608, Sept. 1993.

    Article  Google Scholar 

  333. Micrograph provided by Marie S. Cole, IBM.

    Google Scholar 

  334. M. S. Cole and T. Caulfield. “Ceramic Ball Grid Array Packaging,” Proc. SMTA National Symposium, pp. 15–21, 1994.

    Google Scholar 

  335. R. N. Master, M. S. Cole, G. B. Martin, and A. Caron. “Ceramic Column Grid Array for Flip Chip Applications,” Proc. 1995 ECTC, pp. 925–929, 1995.

    Google Scholar 

  336. J. H. Lau (ed.), Chip on Board: Technologies for Multichip Modules, Van Nostrand Reinhold, New York, 1994.

    Google Scholar 

  337. Y. Tsukada, S. Tsuchida, and Y. Mashirnoto. “Surface Laminar Circuit Packaging,” Proc. 1992 ECTC, pp. 22–27, 1992.

    Google Scholar 

  338. D. O. Powell and K. Trivedi. “Flip-Chip on FR-4 Integrated Circuit Packaging,” Proc. 1993 ECTC, pp. 182–186, 1993.

    Google Scholar 

  339. T. Baumeister, E. A. Avallone, and T. Baumeister III. Mark’s Standard Handbook for Mechanical Engineers, 8th ed., pp. 5–22, McGraw-Hill, New York, 1978.

    Google Scholar 

  340. J. Marin. “Working Stresses,” in ASME Handbook, 2nd ed., ed. by O. J. Horger, vol. 1, p. 527, McGraw-Hill, New York, 1965.

    Google Scholar 

  341. S. S. Manson. Thermal Stresses and Low Cycle Fatigue, pp. 131–161, McGraw-Hill, New York, 1966.

    Google Scholar 

  342. W. Englemaier and A. Wagner. “Fatigue Behavior and Ductility Determination for Rolled Annealed Copper Foil and Flex Circuits on Kapton,” Circuit World, 14(2): pp. 30–38, 1988.

    Article  Google Scholar 

  343. F. T. Flaherty, Jr. “Dynamics of Structures,” in Physical Design of Electronic Systems, vol. 1, pp. 109–122, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  344. R. D. Mindlin. “Dynamics of Package Cushioning,” Bell Sys. Tech. J., 24: pp. 353–461, 1945.

    Google Scholar 

  345. F. T. Flaherty, Jr. “Dynamics of Structures,” in Physical Design of Electronic Systems, vol. 1, p. 149, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  346. D. R. Gabe, “Whisker Growth on Tin Electrodeposits,” Trans. Inst. Metal Finish, MF-65: p. 115, 1987.

    Google Scholar 

  347. M. Antler. “Survey of Contact Fretting in Electrical Connectors,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-8: pp. 87–104, 1985.

    Article  Google Scholar 

  348. M. B. Peterson. “Wear Testing Objectives and Approaches,” ASTM STP 615, Selection and Use of Wear Tests for Metals, ed. by R. G. Bayer, ASTM, Philadelphia, 1975, pp, 5–11.

    Google Scholar 

  349. K. R. Mecklenberg and R. J. Benzing. “Testing for Adhesive Wear,” ASTM STP 615, Selection and Use of Wear Tests for Metals, ed. by R. G. Bayer, ASTM, Philadelphia, 1975, pp. 21–29.

    Google Scholar 

  350. K. C. Ludema. “Wear Debris as an Indicator of Valid Simulation in Wear Tests,” ASTM STP 615, Selection and Use of Wear Tests for Metals, ed. by R. G. Bayer, ASTM, Philadelphia, 1975, pp. 102–109.

    Google Scholar 

  351. H. Uhlig, I. Feing, W, Tierney, and A. McClennan. “Fundamental Investigation of Fretting Corrosion,” N. A. C. A. Technical Note, No. 3029, Washington, DC, 1953.

    Google Scholar 

  352. M. G. El-Sherbiny and F. B. Salem. “Fretting Resistant Ion Plated Coatings,” ASTM STP 780, Materials Evaluation Under Fretting Conditions, ASTM, Philadelphia, 1981, p. 135.

    Google Scholar 

  353. M. G. El-Sherbiny and F. B. Salem. “Fretting Resistant Ion Plated Coatings,” ASTM STP 780, Materials Evaluation Under Fretting Conditions, ASTM, Philadelphia, 1981, p. 136.

    Google Scholar 

  354. R. C. Bill. “Review of Factors That Influence Fretting Wear,” ASTM STP 780, Materials Evaluation Under Fretting Conditions, ASTM, Philadelphia, 1981, p. 168.

    Google Scholar 

  355. R. C. Bill. “Review of Factors That Influence Fretting Wear,” ASTM STP 780, Materials Evaluation Under Fretting Conditions, ASTM, Philadelphia, 1981, p. 171.

    Google Scholar 

  356. M. G. El-Sherbiny and F. B. Salem. “Fretting Resistant Ion Plated Coatings,” ASTM STP 780, Materials Evaluation Under Fretting Conditions, ASTM, Philadelphia, 1981, p. 130.

    Google Scholar 

  357. J. H. M. Neijzen and J. H. A. Glashorster. “Fretting Corrosion of Tin-Coated Electrical Contacts,” IEEE Trans. on Components Hybrids Manuf. Technol., CHMT-10(1): pp. 68–74, 1987.

    Article  Google Scholar 

  358. M. Antler. “Fretting Corrosion of Solder-Coated Electrical Contacts,” IEEE Trans. Components Hybrids Manuf. Technol., CHMT-7(1): pp. 129–138, 1984.

    Article  Google Scholar 

  359. D. W. Rice, R. J. Cappell, W. Kinsolving, and J. J. Laskowski. “Indoor Corrosion of Metals,” J. Electrochem. Soc: Solid-State Sci. Technol., 127: pp, 891–901, 1980.

    Google Scholar 

  360. S. P. Sharma and E. S. Sproles, Jr. “Reaction of Palladium with Chlorine and Hydrogen Chloride in Electrical Contacts, 1981,” Proceedings of the 27th Annual Meeting of the Holm Conference on Electrical Contacts, pp. 203–210, 1981.

    Google Scholar 

  361. W. Abbott and K. L. Schreiber. “Dynamic Contact Resistance of Gold, Tin and Palladium Connector Interfaces During Low Amplitude Motion,” Proceedings of the 27th Annual Meeting of the Holm Conference on Electrical Contacts, pp. 211–219, 1981.

    Google Scholar 

  362. ASTM B735 Standard Test Methods for Porosity in Gold Coatings on Metal Substrates by Gas Exposures, or ASTM B741 Standard Test Methods for Porosity in Gold Coatings on Metal Substrates by Paper Electrography, ASTM, Philadelphia, 1985.

    Google Scholar 

  363. R. G. Bayer, R. Ginsburg, and R. C. Lasky. “Settleable and Airborne Particles in Industrial Environments.” Electrical Contacts1989, Proceedings of the Thirty-Fifth IEEE Holm Conference on Electrical Contacts, pp. 155–168, 1989.

    Google Scholar 

  364. R. Holm. Electrical Contacts, Theory’ and Applications, 4th ed., pp. 193 and 196, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  365. ASHRAE Handbook of Fundamentals, p. 667, American Society of Heating, Refrigerating and Air Conditioning Engineers, New York, 1972.

    Google Scholar 

  366. S. S. Furkay, R. F. Kilburn and G. Monti. Thermal Management Concepts in Microelectronic Packaging, vol. ISHM Technical Monograph Series 6984-003, International Society for Hybrid Microelectronics, Stiver Spring, MD, 1984.

    Google Scholar 

  367. W. P. Noble and A. R. Ellenberger. “Temperature Effects on Device Functionality,” in Thermal Management Concepts in Microelectronic Packaging, vol. ISHM Technical Monograph Series 6984-003, pp. 45–66, International Society for Hybrid Microelectronics, Silver Spring, MD, 1984.

    Google Scholar 

  368. R. Holm. Electrical Contacts, Theory and Applications, 4th ed., pp. 10–20, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  369. R. H. Perry and C. H. Chilton (eds.), Chemical Engineers Handbook, pp. 3–247, McGraw-Hill, New York, 1973.

    Google Scholar 

  370. M. G. Fontana and N. D. Greene. Corrosion Engineering, 2nd ed., pp. 29–57, McGraw-Hill, New York, 1978.

    Google Scholar 

  371. R. H. Perry and C. H. Chilton (eds.), Chemical Engineers Handbook, pp. 10–20, McGraw-Hill, New York, 1973.

    Google Scholar 

  372. V. Antonetti and R. E. Simons. “Bibliography of Heat Transfer in Electronic Equipment,” IEEE Trans. Components Hybrids Manuf. Tech., CHMT-8(2): pp. 289–295, 1985.

    Article  Google Scholar 

  373. S. Vaynman, M. E. Fine, and D. Jeannotte. “Isothermal Fatigue Life Prediction of Lead Base Low Tin Solder,” IEEE Proceedings of the 37th Electronic Components Conference, pp. 598–603, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goldmann, L.S., Howard, R.T., Jeannotte, D.A. (1997). Package Reliability. In: Tummala, R.R., Rymaszewski, E.J., Klopfenstein, A.G. (eds) Microelectronics Packaging Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4086-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4086-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6829-8

  • Online ISBN: 978-1-4615-4086-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics