Skip to main content

Modeling of Pesticide Biodegradation in Soil

  • Chapter

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Pesticides are an integral part of modern agriculture. A significant proportion of the increase in agricultural productivity since World War II is directly attributable to effectively controlling weed, insect, and fungal pests with herbicides, insecticides, and fungicides, respectively. The need for pesticides is underscored by a total U.S. production in 1990 of approximately 1.1 billion lb (Anonymous 1990). However, the intentional release of large quantities of synthetic pesticides has given rise to serious concerns over the potential for adverse human health and environmental effects. Largely as a consequence of Rachel Carson’s book Silent Spring, the majority of organochlorine insecticides were banned (e.g., DDT) in the 1970s because of their volatility, persistence, and tendency to bioaccumulate in the food chain. In recent years, there has been renewed concern over the fate of soil-applied herbicides and insecticides because of the potential for runoff and/or leaching through the soil profile, resulting in the contamination of surface and ground waters. Various strategies have been proposed for minimizing contamination; however, the only permanent and environmentally benign solution is biodegradation. Consequently, the use of pesticides that are rapidly and extensively biodegraded to CO2, H2O, NH4 +, etc. is desirable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., and K. M. Scow. 1989. Kinetics of biodegradation in soil. In B. L. Sawhney, K. Brown (eds.), Reactions and Movement of Organic Chemicals in Soils, pp. 243–269. SSSA Special Publication No. 22. Madison, WI.

    Google Scholar 

  • Anonymous. 1990. National Agricultural Chemicals Association Industry Profile. Compiled by Ernst and Young, Washington, DC.

    Google Scholar 

  • Apajalahti, J. H. A., and M. S. Salkinoja-Salonen. 1984. Absorption of pentachlorophenol (PCP) by bark chips and its role in microbial PCP degradation. Microb. Ecol. 10:359–367.

    Article  Google Scholar 

  • Audus, L. J. 1951. The biological detoxification of hormone herbicides in soil. Plant and Soil 3:170–192.

    Article  Google Scholar 

  • Ball, W. P., and P. V. Roberts. 1991. Diffusive rate limitations in the sorption of organic chemicals. In R. A. Baker (ed.), Organic Substances and Sediments in Water: Vol. 2, Processes and Analytical, pp. 273–310. Lewis Publishers, Chelsea, MI.

    Google Scholar 

  • Bean, B. W., F. W. Roeth, A. R. Martin, and R. G. Wilson. 1988. Influence of prior pesticide treatments on EPTC and butylate degradation. Weed Sci. 36:70–77.

    Google Scholar 

  • Brunner, W., and D. D. Focht. 1984. Deterministic three-half-order kinetic model for microbial degradation of added carbon substrates in soil. Appl. Environ. Microbiol. 47:167–172.

    Google Scholar 

  • Brusseau, M. L., R. E. Jessup, and P. S. C. Rao. 1991. Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes. Environ. Sci. Technol. 25:134–142.

    Article  Google Scholar 

  • Camper, N. D., M. N. Fleming, and H. D. Skipper. 1987. Biodegradation of carbofuran in pretreated and nonpretreated soils. Bull. Environ. Contam. Toxicol. 39:571–578.

    Article  Google Scholar 

  • Carsel, R. F., C. N. Smith, L. A. Mulkey, and J. D. Jowise. 1984. User’s Manual for the Pesticide RootZone Model (PRZM): Release 1. U.S. Environmental Protection Agency. EPA-600/3-109. Athens

    Google Scholar 

  • Chapman, R. A., C. R. Harris, and C. Harris. 1986. Observations on the effect of soil type, treatment intensity, insecticide formulation, temperature and moisture on the adaptation and subsequent activity of biological agents associated with carbofuran degradation in soil. J. Environ. Sci. Health. B21:125–141.

    Article  Google Scholar 

  • Chaudry, G. R., and A. N. Ali. 1988. Bacterial metabolism of carbofuran. Appl. Environ. Microbiol. 54:1414–1419.

    Google Scholar 

  • Estrella, M. R., M. L. Brusseau, R. S. Maier, I. L. Pepper, P. J. Wierenga, and R. M. Miller. 1993. Biodegradation, sorption, and transport of 2,4-dichlorphenoxyacetic acid in saturated and unsaturated soil. Appl. Environ. Microbiol. 59:4266–4273.

    Google Scholar 

  • Gamerdinger, A. M., A. T. Lemley, and R. J. Wagnet. 1991. Nonequilibrium sorption and degradation of three 2-chloro-s-triazine herbicides in soil-water systems. J. Environ. Qual. 20:815–822.

    Article  Google Scholar 

  • Getzin, L. W. 1968. Persistence of diazinon and zinophos in soil: effects of autoclaving, temperature, moisture, and acidity. J. Econ. Entomol. 61:1560–1565.

    Google Scholar 

  • Gordon, A. S., and F. J. Millero. 1985. Adsorption mediated decrease in the biodegradation rate of organic compounds. Microb. Ecol. 11:289–298.

    Article  Google Scholar 

  • Greer, L. E., J. A. Robinson, and D. R. Shelton. 1992. Kinetic comparison of seven strains of 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl. Environ. Microbiol. 58:1027–1030.

    Google Scholar 

  • Greer, L. E., and D. R. Shelton. 1992. Effect of inoculant strain and organic matter content on kinetics of 2,4-dichlorophenoxyacetic acid degradation in soil. Appl. Environ. Microbiol. 58:1459–1465.

    Google Scholar 

  • Guerin, W. F., and S. A. Boyd. 1992. Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl. Environ. Microbiol. 58:1142–1152.

    Google Scholar 

  • Hamaker, J. W., and C. A. I. Goring. 1976. Turnover of pesticide residues in soil. In D. D. Kaufman, C. G. Still, G. D. Paulson, and S. K. Bandai (eds.), Bound and Conjugated Pesticide Residues, pp. 219–243. ACS Symposium Series 29. Washington, DC.

    Chapter  Google Scholar 

  • Harris, R., R. A. Chapman, C. Harris, and C. M. Tu. 1984. Biodegradation of pesticides in soil: Rapid reduction of carbonate degrading factors after carbofuran treatment. J. Environ. Sci. B19:1–11.

    Google Scholar 

  • Helling, C. S., B. F. Engelke, and M. A. Doherty. 1994. DDT dissipation in hawaiian in-situ soil columns. J. Environ. Sci. Health. B29(l):103–119.

    Google Scholar 

  • Horvath, R. S. 1972. Microbial co-metabolism and degradation of chloroaromatics in nature. Bacteriol. Rev. 36:146–155.

    Google Scholar 

  • Karickhoff, S. W. 1980. Sorption kinetics of hydrophobic pollutants in natural sediments. In R. A. Baker (ed.), Contaminants and Sediments, pp. 193–205. Ann Arbor Science, Ann Arbor, MI.

    Google Scholar 

  • Karns, J. S., W. W. Mulbry, J. O. Nelson, and P. C. Kearney. 1986. Metabolism of carbofuran by a pure bacterial culture. Pest. Biochem. Physiol. 25:211–217.

    Article  Google Scholar 

  • Kaufman, D. D., C. G. Still, G. D. Paulson, and S. K. Bandai. 1976. Bound and Conjugated Pesticide Residues. ACS Symposium Series 29. Washington, DC.

    Google Scholar 

  • Lichtenstein, E. P., and K. R. Schulz. 1964. The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soils with special emphasis on parathion. J. Econ. Entomol. 57:618–627.

    Google Scholar 

  • Mandelbaum, R. T., P. W. Wackett, and D. L. Allan. 1993. Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Appl. Environ. Microbiol. 59:1695–1701.

    Google Scholar 

  • McCall, P. J., and G. L. Agin. 1985. Desorption kinetics of picloram as affected by residence time in the soil. Environ. Toxicol. Chem. 4:37–44.

    Article  Google Scholar 

  • Monod, L. J. 1949. The growth of bacterial cultures. Ann. Rev. Microbiol. 3:371–394.

    Article  Google Scholar 

  • Moorman, T. B. 1988. Populations of EPTC-degrading microorganisms in soils with accelerated rates of EPTC degradation. Weed Sci. 36:96–101.

    Google Scholar 

  • Morgan, P. H., L. P. Mercer, and N. W. Flodin. 1975. General model for nutritional responses of higher organisms. Proc. Nat. Acad. Sci. 72:4327–4331.

    Article  Google Scholar 

  • Ogram, A. V., R. E. Jessup, L. T. Ou, and P. S. C. Rao. 1985. Effects of sorption on biological degradation rates of 2,4-dichlorophenoxyacetic acid in soils. Appl. Environ. Microbiol. 49:582–587.

    Google Scholar 

  • Osgerby, J. M. 1973. Processes affecting herbicide action in soil. Pest. Sci. 4:247–258.

    Article  Google Scholar 

  • Parkin, T. B., and D. R. Shelton. 1992. Spatial and temporal variability of carbofuran degradation in soil. J. Environ. Qual. 21:672–678.

    Article  Google Scholar 

  • Parkin, T. B., and D. R. Shelton. 1994. Modeling environmental effects on enhanced carbofuran degradation in soil. Pest. Sci. 40:163–168.

    Article  Google Scholar 

  • Parkin, T. B., D. R. Shelton, and J. A. Robinson. 1991. Evaluation of methods for characterizing carbofuran hydrolysis in soil. J. Environ. Qual. 20:763–769.

    Article  Google Scholar 

  • Pignatello, J. J. 1989. Sorption dynamics of organic compounds in soils and sediments. In B. L. Sawhney and K. Brown (eds), Reactions and Movement of Organic Chemicals in Soils, pp. 45–80. SSSA Special Publication No. 22. Madison, WI.

    Google Scholar 

  • Racke, K. D., and J. R. Coats. 1987. Enhanced degradation of isofenphos by soil microorganisms. J. Agric. Food Chem. 35:94–99.

    Article  Google Scholar 

  • Racke, K. D., and J. R. Coats. 1990. Enhanced Biodegradation of Pesticides in the Environment. American Chemical Society, ACS Symposium Series, 426. Washington, DC.

    Google Scholar 

  • Radosevich, M., S. J. Traina, Y.-L. Hao, and O. H. Touvinen. 1995. Degradation and mineralization of atrazine by a soil bacterial isolate. Appl. Environ. Microbiol. 61:291–302.

    Google Scholar 

  • Ramanand, K., M. Sharmila, and N. Sethunathan. 1988. Mineralization of carbofuran by a soil bacterium. Appl. Environ. Microbiol. 54:2129–2133.

    Google Scholar 

  • Rao, P. S. C, and J. M. Davidson. 1988. Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. In M. R. Overcash and J. M. Davidson (eds.), Environmental Impact of Nonpoint Source Pollution, pp. 23–67. Ann Arbor Science Publishers, Ann Arbor, MI.

    Google Scholar 

  • Robinson, K. G., W. S. Farmer, and J. T. Novak. 1990. Availability of sorbed toluene in soils for biodegradation by acclimated bacteria. Water Res. 24:345–350.

    Article  Google Scholar 

  • Robinson, J. A., and J. M. Tiedje. 1993. Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Appl. Environ. Microbiol. 45:1453–1458.

    Google Scholar 

  • Scow, K. M., and M. Alexander. 1992. Effect of diffusion on the kinetics of biodegradation: Experimental results with synthetic aggregates. Soil Sci. Soc. Am. J. 56:128–134.

    Article  Google Scholar 

  • Scow, K. M., and J. Hutson. 1992. Effect of diffusion and sorption on the kinetics of biodegradation: Theoretical considerations. Soil Sci. Soc. Am. J. 56:119–127.

    Article  Google Scholar 

  • Scow, K. M., S. Simkins, and M. Alexander. 1986. Kinetics of mineralization of organic compounds at low concentrations in soil. Appl. Environ. Microbiol. 51:1028–1035.

    Google Scholar 

  • Shelton, D. R., and M. A. Doherty. (1997a). A model for estimating enhanced rates of pesticide biodegradation in soil. Submitted to Soil Sci. Soc. Am. J. July/August.

    Google Scholar 

  • Shelton, D. R., and M. A. Doherty. (1997b). Estimating losses of efficacy due to enhanced rates of biodegradation in soil: Model simulations. Submitted to Soil Sci. Soc. Am. J. July/August.

    Google Scholar 

  • Shelton, D. R., and T. B. Parkin. 1991. Effect of moisture on sorption and biodegradation of carbofuran in soil. J. Agric. Food Chem. 39:2063–2068.

    Article  Google Scholar 

  • Shelton, D. R., A. M. Sadeghi, and A. R. Insensee. 1993. Estimation of granular carbofuran dissolution rates in soil. J. Agric. Food Chem. 41:1134–1138.

    Article  Google Scholar 

  • Simkins, S., and M. Alexander. 1984. Models for mineralization kinetics with the variables of substrate concentration and population density. Appl. Environ. Microbiol. 47:167–172.

    Google Scholar 

  • Simkins, S., and M. Alexander. 1985. Nonlinear estimation of the parameters of monod kinetics that best describe mineralization of several substrate concentrations by dissimilar bacterial densities. Appl. Environ. Microbiol. 50:816–824.

    Google Scholar 

  • Speitel, G. E., C. J. Lu, M. Turakhia, and X.-J. Sho. 1988. Biodegradation of trace concentrations of substituted phenols in granular activated carbon columns. Environ. Sci. Technol. 23:68–74.

    Article  Google Scholar 

  • Tal, A., B. Rubin, J. Katan, and N. Aharonson. 1989. Fate of 14C-EPTC in a soil exhibiting accelerated degradation of carbamathioate herbicides and its control. Weed Sci. 37:434–439.

    Google Scholar 

  • Turco, R. F., and A. Konopka. 1990. Biodegradation of carbofuran in enhanced and non-enhanced soils. Soil Biol. Biochem. 22:195–201.

    Article  Google Scholar 

  • van Genuchten, M. T., and R. J. Wagenet. 1989. Two-site/two region models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Sci. Soc. Am. J. 53:1303–1310.

    Article  Google Scholar 

  • Walker, A. 1974. A simulation model for prediction of herbicide persistence. J. Environ. Qual. 3:396–401.

    Article  Google Scholar 

  • Walker, A. 1978. The degradation of methazole in soil. I. effects of soil type, soil temperature and soil moisture content. Pest. Sci. 9:326–332.

    Article  Google Scholar 

  • Weber, J. B., J. A. Best, and J. U. Gonese. 1993. Bioavailability and bioactivity of sorbed organic chemicals. In D. M. Linn (ed.), Sorption and Degradation of Pesticides and Organic Chemicals in Soil, pp. 153–196. SSSA Special Publication No. 32. Madison, WI.

    Google Scholar 

  • Wilson, R. G. 1984. Accelerated degradation of thiocarbamide herbicides in soil with prior thiocarbamide herbicide exposure. Weed Sci. 32:264–268.

    Google Scholar 

  • Wu, S.-C, and P. M. Gschwend. 1986. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ. Sci. Technol. 20:717–725.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shelton, D.R., Doherty, M.A., Parkin, T.B., Robinson, J.A. (1998). Modeling of Pesticide Biodegradation in Soil. In: Koch, A.L., Robinson, J.A., Milliken, G.A. (eds) Mathematical Modeling in Microbial Ecology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4078-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4078-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6826-7

  • Online ISBN: 978-1-4615-4078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics