Skip to main content

Mathematical Models of Bacterial Chemotaxis

  • Chapter

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Many bacterial species exhibit chemotactic behavior, the ability to bias their otherwise random motion in the direction toward increasing concentrations of nutrients (referred to as attractants) or away from increasing concentrations of metabolites or compounds toxic to the bacteria, which may be indicators of unfavorable conditions (referred to as repellents). Chemotaxis can provide a competitive advantage for bacteria because in their natural habitats they are continually exposed to changing environmental conditions, and their survival depends on their capacity to respond favorably to adverse circumstances. Because their small size (1 to 2 μn) and simple structure limits their ability to modify their surroundings, they respond either by migration to a more desirable location or by adaptation of their internal metabolic processes (Macnab 1980). Actaptation occurs naturally through genetic modification, but is relatively slow. Chemotactic bacteria can clearly respond much more quickly by moving to a more favorable environment. Chemotaxis has many practical applications and is known to play important roles in nitrogen fixation in plants, the pathogenesis of disease, and the bioremediation of contaminated aquifers. This last case is of particular interest in our research group because it has been shown that bacteria are capable of degrading many toxic organic materials—including halogenated hydrocarbons via anaerobic degradation (Bouwer 1992; Harvey 1991)—and additionally respond chemotactically to these compounds. We are pursuing a long-range research program aimed at understanding the role of bacterial motility and chemotaxis in in situ bioremediation processes. The objectives are to quantitatively measure bacterial migration at the macroscopic level (both in the presence and absence of one or more attractant and/or repellent species), understand the basis for the macroscopic behavior by measuring and analyzing the motion of individual bacteria, develop mathematical models for bacterial migration based on microscopic and macroscopic level information, and use the model to predict bacterial migration in natural processes, with particular emphasis on in situ bioremedia- tion processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J. 1966. Chemotaxis in bacteria. Science 153:708–716.

    Article  Google Scholar 

  • Adler, J. 1969. Chemoreceptors in bacteria. Science 166:1588.

    Article  Google Scholar 

  • Adler, J., and W.-W. Tso. 1974. Decision-making in bacteria: chemotactic response of Escherichia coli to conflicting stimuli. Science 184:1292–1294.

    Article  Google Scholar 

  • Allaire, P. E. 1985. Basics of the Finite Element Method. Wm. C. Brown, Dubuque, IA.

    Google Scholar 

  • Allen, M. P., and Tildesly, D. J. 1987. Computer Simulations of Liquids. Oxford University Press, New York.

    Google Scholar 

  • Alt, W. 1980. Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9:147–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Berg, H. C. 1988. A physicist looks at bacterial chemotaxis. Cold Springs Harbor Symp. Quantitative Biol. 53:1.

    Article  Google Scholar 

  • Berg, H. C. 1993. Random Walks in Biology. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Berg, H. C, and Brown, D. A. 1972. Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature 239:500–504.

    Article  Google Scholar 

  • Bornbusch, A. H. 1984. Turning field size and its effects upon computer simulated klinotactic orientation. J. Theor. Biol. 107:151.

    Article  Google Scholar 

  • Bornbusch, A. H., and Conner, W. E. 1986. Effects of self-steered turn size and turn bias upon simulated chemoklinotactic behavior. J. Theor. Biol. 122:7.

    Article  Google Scholar 

  • Bouwer, E. J. 1992. Bioremediation of organic contaminants in the subsurface. In R. Mitchell (ed.), Environmental Microbiology, pp. 287–318. Wiley-Liss, New York.

    Google Scholar 

  • Bray, D., R. B. Bourret, and M. I. Simon. 1993. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4:469–482.

    Google Scholar 

  • Brown, D. A., and H. C. Berg. 1974. Temporal stimulation of chemotaxis in E. coli. Proc. Natl. Acad. Sci. USA 71:1388–1392.

    Article  Google Scholar 

  • Crank, J. 1979. The Mathematics of Diffusion. Clarendon Press, Oxford, England.

    MATH  Google Scholar 

  • Dahlquist, F. W., P. Lovely, and J. D. E. Koshland. 1972. Quantitative analysis of bacterial migration in chemotaxis. Nature 236:120–123.

    Article  Google Scholar 

  • Eisenbach, M. 1991. Signal transduction in bacterial chemotaxis. In J. L. Spudich and B. H. Satir (eds.), Sensory Receptors and Signal Transduction, pp. 137–208. Wiley-Liss, Inc., New York.

    Google Scholar 

  • Ford, R. M., and P. T. Cummings. 1992. On the relationship between cell balance equations for chemotactic cell populations. SIAM J. Appl. Math. 52:1426–1441.

    Article  MathSciNet  MATH  Google Scholar 

  • Ford, R. M., and D. A. Lauffenburger. 1991. Measurement of bacterial random motility and chemotaxis coefficients, II. Application of single-cell-based mathematical model. Biotechnol. Bioeng. 37:661–672.

    Article  Google Scholar 

  • Ford, R. M., J. A. Quinn, B. R. Phillips, and D. A. Lauffenburger. 1991. Measurement of bacterial random motility and chemotaxis coefficients. I. Stopped-flow diffusion chamber assay. Biotechnol. Bioeng. 37:647–660.

    Article  Google Scholar 

  • Frymier, P. D., R. M. Ford, and P. T. Cummings. 1993. Cellular dynamics simulation of bacterial chemotaxis. Chem. Eng. Sci. 48:687–699.

    Article  Google Scholar 

  • Frymier, P. D., R. M. Ford, and P. T. Cummings. 1994. Analysis of bacterial migration. I. Numerical solution of balance equation for one-dimensional attractant gradients. AIChE J. 40:704–715.

    Article  Google Scholar 

  • Guell, D. C, H. Brenner, R. B. Frankel, and H. Hartman. 1988. Hydrodynamic forces and band formation in swimming magnetotactic bacteria. J. Theor. Biol. 135:525.

    Article  Google Scholar 

  • Harvey, R. W. 1991. Parameters involved in modeling movement of bacteria in groundwater. In J. C. Hurst (ed.), Modeling the Environmental Fate of Microorganisms, pp. 89–114. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Keller, E. F., and L. A. Segel. 1971. Model for chemotaxis. J. Theor. Biol. 30:225.

    Article  Google Scholar 

  • Lapidus, I. R., and R. Schiller. 1976. A model for the chemotactic response of a bacterial population. Biophys. J. 16:779–789.

    Article  Google Scholar 

  • Lovely, P. S., and F. W. Dahlquist. 1975. Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 50:477.

    Article  Google Scholar 

  • Macnab, R. M. 1980. Sensing the environment: Bacterial chemotaxis. In R. F. Goldberger (ed.), Biological Regulation and Development, pp. 377–412, Plenum, New York.

    Google Scholar 

  • Macnab, R. M., and S. I. Aizawa. 1984. Bacterial motility and the bacterial flagellar motor. Annu. Rev. Biophys. Bioeng. 13:51–83.

    Article  Google Scholar 

  • Macnab, R. M., and D. E. Koshland. 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69:2509–2512.

    Article  Google Scholar 

  • Mercer, J. R., R. M. Ford, J. L. Stitz, and C. Bradbeer. 1993. Growth rate effects on fundamental transport properties of bacterial populations. Biotechnol. Bioeng., 42:1277–1286.

    Article  Google Scholar 

  • Mesibov, R., G. Ordal, and J. Adler. 1973. The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. J. Gen. Physiol. 23:203.

    Article  Google Scholar 

  • Othmer, H., S. Dunbar, and W. Alt. 1988. Models of dispersal in biological systems. J. Math. Biol. 26:263.

    Article  MathSciNet  MATH  Google Scholar 

  • Patlack, C. S. 1953. Random walk with persistence and external bias. Bull. Math. Biophysics. 15:311.

    Article  Google Scholar 

  • Pfeffer, W. 1988. Uber chemotaktische Bewegungen von Bakterien, Flagellaten und Vol-vocineen. Untersuch. Bot. Inst. Tübingen 2:582–663.

    Google Scholar 

  • Rivero, M. A., R. T. Tranquille H. M. Buettner, and D. A. Lauffenburger. 1989. Transport models for chemotactic cell populations based on individual cell behavior. Chem. Eng. Sci. 44:2881–2897.

    Article  Google Scholar 

  • Rubik, B. A., and D. E. Koshland. 1978. Potentiation, desensitization and inversion of response in bacterial sensing of chemical stimuli. Proc. Natl. Acad. Sci. USA 75:2820–2824.

    Article  Google Scholar 

  • Sandler, S. I. 1977. Chemical and Engineering Thermodynamics. Wiley, New York.

    Google Scholar 

  • Segel, L. A. 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32:653–665.

    Article  MATH  Google Scholar 

  • Spudich, J. L., and J. D. E. Koshland. 1975. Quantitation of the sensory response in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 72:710–713.

    Article  Google Scholar 

  • Stock, J. B., A. J. Ninfa, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450–490.

    Google Scholar 

  • Strauss, I. 1992. Bacterial chemotaxis in the presence of multiple stimuli. M. S. thesis, University of Virginia.

    Google Scholar 

  • Strauss, I., P. D. Frymier, C. M. Hahn, and R. M. Ford. 1995. Analysis of bacterial migration. II. Studies of multiple attractant gradients. AIChE J. 41:402–414.

    Article  Google Scholar 

  • Stroock, D. W. 1974. Some stochastic processes which arise from a model of the motion of a bacterium. Z. Wahrsch. Ver. Geb. 28:305–315.

    Article  MATH  Google Scholar 

  • Tankersley, R. A. and W. E. Conner. 1990. Not-so-random-walks-computer simulations of chemo-orientation behavior. BioScience 40:392.

    Article  Google Scholar 

  • Tsang, N., R. Macnab, and J. D. E. Koshland. 1973. Common mechanism for repellents and attractants in bacterial chemotaxis. Science 181:60.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ford, R.M., Cummings, P.T. (1998). Mathematical Models of Bacterial Chemotaxis. In: Koch, A.L., Robinson, J.A., Milliken, G.A. (eds) Mathematical Modeling in Microbial Ecology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4078-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4078-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6826-7

  • Online ISBN: 978-1-4615-4078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics