Skip to main content

From the Ground Up: The Development and Demonstrated Utility of the Ruminal Ecosystem Model

  • Chapter
Mathematical Modeling in Microbial Ecology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

  • 470 Accesses

Abstract

Our understanding of rumen digestion and microbial ecology has developed in several stages. The first was recognition in the 1940s of the fact that the rumen microbes play a major role in the digestive process, producing volatile fatty acids, and that they are a major source of nutrients to the ruminant animal (Hungate 1966). This recognition was followed by studies that led to the isolation, taxonomic identification, and enumeration of microbes present in the rumen (Bryant 1959). These studies were followed by studies of pure cultures of rumen microbes in which their physiological properties and metabolism were defined. In addition, interactions among rumen microbes were evaluated. This area of inquiry is not complete, even though activity has been sporadic and limited during recent years. The final phase of our evaluation of the rumen as an ecosystem requires quantitative and dynamic analyses of the extent to which microbes express their characteristics in mixed cultures and in vivo. To achieve this goal we must understand microbial interdependence and competition in the rumen (Russell and Hespell 1981). Progress toward this goal has been limited and may require several decades for adequate resolution. With the exception of the model of Russell and Allen (1984)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argyle, J. L., and R. L. Baldwin. 1988. Modeling of rumen water kinetics and effects of rumen pH changes. J. Dairy Sci. 71:1178–1188.

    Article  Google Scholar 

  • Armsby, H. P., and J. A. Fries. 1915. Net energy values of feeding stuffs for cattle. J. Agric. Res. 3:435–491.

    Google Scholar 

  • Armstrong, D. G. 1964. Evaluation of artificially dried grass as a source of energy for sheep. II. The energy value of cocksfoot, timothy and two strains of rye grass at varying stages of maturity. J. Agric. Sci. 62:399–416.

    Article  Google Scholar 

  • Armstrong, D. G., K. L. Blaxter, N. McC. Graham, and F. W. Wainman. 1958. The utilization of the energy of two mixtures of steam-volatile fatty acids by fattening sheep. Br. J. Nutr. 12:177–188.

    Article  Google Scholar 

  • Armstrong, D. G., K. L. Blaxter, and R. Waite. 1964. The evaluation of artificially dried grass as a source of energy for sheep. III. The prediction of nutritive value from chemical and biological measurements. J. Agric. Sci. 62:417–424.

    Article  Google Scholar 

  • Baldwin, R. L. 1995. Modeling Ruminant Digestion and Metabolism. Chapman & Hall Ltd., UK.

    Google Scholar 

  • Baldwin, R. L., and M J. Allison. 1983. Rumen metabolism. J. Anim. Sci. 57:461–477.

    Google Scholar 

  • Baldwin, R. L., H. L. Lucas, and R. Cabrera. 1970. Energetic relationships in the formation and utilization of fermentation end-products. In A. T. Phillipson (ed.), Physiology of Digestion and Metabolism in the Ruminant, pp. 319–334. Oriel Press, Newcastle Upon Tyne.

    Google Scholar 

  • Baldwin, R. L., L. J. Koong, and M. J. Ulyatt. 1977. A dynamic model of ruminant digestion for evaluation of factors affecting nutritive value. Agric. Syst. 2:255–288.

    Article  Google Scholar 

  • Baldwin, R. L., J. H. M. Thornley, and D. E. Beever. 1987. Metabolism of the lactating cow II. Digestive elements of a mechanistic model. J. Dairy Res. 54:107–131.

    Article  Google Scholar 

  • Beever, D. E., Black, J. L., and Faichney, G. J. 1981. Simulation of the effects of rumen function on the flow of nutrients from the stomach of sheep: Part 2. Assessment of computer predictions. Agric. Syst. 6:221–241.

    Article  Google Scholar 

  • Black, J. L., D. E. Beever, G. J. Faichney, B. R. Howarth, and N. M Graham. 1980. Simulation of the effects of rumen function on the flow of nutrients from the stomach of sheep: Part I. Description of a computer program. Agric. Syst. 6:195–219.

    Article  Google Scholar 

  • Blaxter, K. L. 1967. The Energy Metabolism of Ruminants,2nd ed. Hutchinson and Co. Ltd., London.

    Google Scholar 

  • Blaxter, K. L., and J. L. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19:511–522.

    Article  Google Scholar 

  • Bryant, M. P. 1959. Bacterial species of the rumen. Bacteriol. Rev. 23:125–153.

    Google Scholar 

  • Colovos, N. F., J. B. Holter, R. M. Koes, W. E. Urban, Jr., and H. A. Davis. 1970. Digestibility, nutritive value and intake of ensiled corn plant (Tea Mays) in cattle and sheep. J. Anim. Sci. 30:819–824.

    Google Scholar 

  • Colovos, N. F., H. A. Keener, J. R. Prescott, and A. E. Teeri. 1979. The nutritive value of timothy hay at different stages of maturity as compared with second cutting clover hay. J. Dairy Sci. 32:659–664.

    Article  Google Scholar 

  • Coppock, C. E., W. P. Flatt, L. A. Moore, and W. E. Stewart. 1964. Effect of hay to grain ratio on utilization of metabolizable energy for milk production by dairy cows. J. Dairy Sci. 47:1330–1338.

    Article  Google Scholar 

  • Czerkawski, J. W. 1986. An Introduction to Rumen Studies. Pergamon Press Ltd., Oxford, U.K.

    Google Scholar 

  • Danfaer, A. 1990. A dynamic model of nutrient digestion and metabolism in lactating dairy cows. Ph.D. Dissertation, National Institute of Animal Science, Foulurm, Denmark.

    Google Scholar 

  • Dijkstra, J., H. D. S. C. Neal, D. E. Beever, and J. France. 1992. Simulation of nutrient digestion, absorption and outflow in the rumen: Model description. J. Nutr. 122:2239–2256.

    Google Scholar 

  • Dobson, A., and M. J. Dobson. (eds.). 1988. Aspects of Digestive Physiology in Ruminants. Comstock Publishing Associates, Cornell, University Press, Ithaca, NY.

    Google Scholar 

  • Flatt, W. P., P. W. Moe, L. A. Moore, A. W. Munson, and T. Cooper. 1967. Energy utilization by high producing dairy cows. II. Summary of energy balance experiments with lactating holstein cows. Eur. Assoc. Anim. Prod. Publ. 12:235–251.

    Google Scholar 

  • France, J., J. H. M. Thornley, and D. E. Beever. 1982. A mathematical model of the rumen. J. Agric. Sci. 99:343–353.

    Article  Google Scholar 

  • Graham, N. McC, K. L. Blaxter, and D. G. Armstrong. 1958. Analytical and other techniques used in respiration calorimetry and their errors. Eur. Assoc. Anim. Prod. Publ. 8:157–163.

    Google Scholar 

  • Hespell, R. B., and M. P. Bryant. 1979. Efficiency of rumen microbial growth: Influence of some theoretical and experimental factors on Y atp−. J. Anim. Sci. 49:1640–1659.

    Google Scholar 

  • Hogan, J. P. 1975. Symposium: Protein and amino acid nutrition in the high producing cow. Quantitative aspects of nitrogen utilization in ruminants. . Dairy Sci. 58:1164–1177.

    Article  Google Scholar 

  • Hungate, R. E. (ed.). 1966. The Rumen and Its Microbes. Academic Press, New York and London.

    Google Scholar 

  • Koong, L. J., R. L. Baldwin, M. J. Ulyatt, and T. J. Charlesworth. 1975. Iterative computation of metabolic flux and stoichiometric parameters for alternate pathways in rumen fermentation. Comp. Program. Biomed. 4:209–213.

    Article  Google Scholar 

  • Maeng, W. J., and R. L. Baldwin. 1976. Factors influencing rumen microbial growth rates and yields: Effect of amino acid additions to a purified diet with nitrogen from urea. J. Dairy Sci. 59:648–655.

    Article  Google Scholar 

  • Maeng, W. J., C. J. Van Nevel, R. L. Baldwin, and J. G. Morris. 1976. Rumen microbial growth rates and yields: Effect of amino acids and protein. J. Dairy Sci. 59:68–79.

    Article  Google Scholar 

  • Mazanov, A., and J. V. Nolan. 1976. Simulation of the dynamics of nitrogen metabolism in sheep. Br. J. Nutr. 35:149–174.

    Article  Google Scholar 

  • McDonald, I. W., and A. C. I. Warner (eds.). 1975. Digestion and Metabolism in the Ruminant. The University of New England Publishing Unit, Armidale, N.S.W., Australia.

    Google Scholar 

  • Moe, P. W., W. P. Flatt, and H. F. Tyrrell. 1972. Net energy value of feeds for lactation. J. Dairy Sci. 55:945–958.

    Article  Google Scholar 

  • Moe, P. W., and H. F. Tyrrell. 1976. Effect of feed intake and physical form on energy value of corn in timothy hay for lactating cows. J. Dairy Sci. 60:752–758.

    Article  Google Scholar 

  • Moe, P. W., and H. F. Tyrrell. 1979a. Effect of endosperm type on incremental energy value of corn grain for dairy cows. J. Dairy Sci. 62:447–454.

    Article  Google Scholar 

  • Moe, P. W., and H. F. Tyrrell. 1979b. Methane production in dairy cows. Eur. Assoc. Anim. Prod. Publ. 26:59–62.

    Google Scholar 

  • Moe, P. W., H. F. Tyrrell, and N. W. Hooven, Jr. 1973a. Energy balance measurements with corn meal and ground oats for lactating dairy cows. J. Dairy Sci. 56:1149–1153.

    Article  Google Scholar 

  • Moe, P. W., H. F. Tyrrell, and N. W. Hooven, Jr. 1973b. Physical form and energy value of corn grain. J. Dairy Sci. 56:1298–1304.

    Article  Google Scholar 

  • Murphy, M. R., R. L. Baldwin, and L. J. Koong. 1982. Estimate of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J. Anim. Sci. 55(2): 411–421.

    Google Scholar 

  • Murphy, M. R., R. L. Baldwin, and M. J. Ulyatt. 1986. An update of a dynamic model of ruminant digestion. J. Anim. Sci. 62:1412–1422.

    Google Scholar 

  • Neal, H. D. S. C, J. Dijkstra, and M. Gill. 1992. Simulation of nutrient digestion, absorption and outflow in the rumen: Model evaluation. J. Nutr. 122:2257–2272.

    Google Scholar 

  • Nolan, J. V. 1975. Quantitative models of nitrogen metabolism in sheep. In I. W. Mcdonald and A. C. I. Warner (eds.), Digestion and Metabolism in the Ruminant. Proceedings of the IV International Symposium on Ruminant Physiology. The University of New England, Armidale, N. S. W. Australia, pp. 417–427.

    Google Scholar 

  • Phillipson, A. T. (ed.). 1970. Physiology of Digestion and Metabolism in the Ruminant. Oriel Press, Newcastle upon Tyne.

    Google Scholar 

  • Reichl, J. R., and R. L. Baldwin. 1975. Rumen modeling: Rumen input-output balance models. J. Dairy Sci. 58:879–890.

    Article  Google Scholar 

  • Reichl, J. R., and R. L. Baldwin. 1976. A rumen linear programming model for evaluation of concepts of rumen microbial function. J. Dairy Sci. 59:439–454.

    Article  Google Scholar 

  • Russell, J. B., and M. S. Allen, (eds.). 1984. Gastrointestinal Microecology. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Russell, J. B., and R. B. Hespell. 1981. Microbial rumen fermentation. J. Dairy Sci. 64:1153–1169.

    Article  Google Scholar 

  • Russell, J. B., J. D. O’Conner, D. G. Fox, P. J. Van Soest, and C. J. Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminai fermentation. J. Anim. Sci. 70:3551–3561.

    Google Scholar 

  • Search: Agriculture. 1990. The Cornell Net Carbohydrate and Protein System for Evaluating Cattle Diets. Cornell University Agriculture Experiment Station, Number 34, Ithaca, NY.

    Google Scholar 

  • Storm, E., and E. R. Ørskov. 1983. The nutritive value of rumen micro-organisms in ruminants. I. Large-scale isolation and chemical composition of rumen micro-organisms. Br. J. Nutr. 50:463–470.

    Article  Google Scholar 

  • Tyrrell, H. F., and P. W. Moe. 1972. Net energy value for lactating of a high and low concentration ration containing corn silage. J. Dairy Sci. 55:1106–1112.

    Article  Google Scholar 

  • Tyrrell, H. F., C. K. Reynolds, and P. W. Moe. 1976. Effect of basal ration consumed upon utilization of acetic acid for lipogenesis by mature cattle. Eur. Assoc. Anim. Prod. Publ. 19:57–60.

    Google Scholar 

  • Ulyatt, M. J., G. C. Waghorn, A. John, C. S. W. Reid, and J. Munro. 1984. Effect of intake and feeding frequency behavior and quantitative aspects of digestion in sheep fed chaffed lucerne hay. J. Agric. Res. (Camb.) 102:645–657.

    Article  Google Scholar 

  • Wolin, M. J. 1960. A theoretical rumen fermentation balance. J. Dairy Sci. 43:1452–1459.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baldwin, R.L., Donovan, K.C. (1998). From the Ground Up: The Development and Demonstrated Utility of the Ruminal Ecosystem Model. In: Koch, A.L., Robinson, J.A., Milliken, G.A. (eds) Mathematical Modeling in Microbial Ecology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4078-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4078-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6826-7

  • Online ISBN: 978-1-4615-4078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics