Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 29))

Abstract

The topic of this chapter is the critical point theory for the functionals that are not locally Lipschitz as was the case in Chatper 2. The setting is more general than in Chatper 2, and the results contain those in Chang [2]. In fact, this chapter presents an extension of Szulkin’s minimax principles [32] for functions of the form I = Φ + Ψ with ΦC 1(X, ) (X denotes a real Banach space and Ψ a convex, proper and lower semicontinuous functional) to the case where Φ is locally Lipschitz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambrosetti and P.H. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Func. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  2. K.C. Chang, Variational Methods for Nondifferentiable Functionals and Applications to Partial Differential Equations, J. Math. Anal. Appl. 80 (1981), 102–129.

    Article  MathSciNet  MATH  Google Scholar 

  3. F.H.Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.

    MATH  Google Scholar 

  4. Y. Du, A deformation Lemma and some Critical Point Theorems, Bull. Austral. Math. 43 (1991), 161–168.

    Article  MATH  Google Scholar 

  5. I. Ekeland, On the Variational Principle, J. Math. Anal. Appl. 47 (1974), 324–353.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Ekeland, Nonconvex Minimization Problems, Bull. (New Series) Amer. Math. 1 (1979), 443–474.

    Google Scholar 

  7. N. Ghoussoub, Location, Multiplicity and Morse Indices of Min-Max Critical Points, J. reine angew. Math. 417 (1991), 27–76.

    MathSciNet  MATH  Google Scholar 

  8. D. Goeleven, V.H. Nguyen and M. Willem, Existence and Multiplicity Results for Semicoercive Unilateral Problems, Bull. Austral. Math. Soc. 49 (1994), 489–497.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Goeleven, D. Motreanu and RD.Panagiotopoulos, Multiple Solutions for a Class of Eigenvalue Problems in Hemivariational Inequalities, Nonlinear Anal. TMA 20 (1997), 9–16.

    Google Scholar 

  10. D. Motreanu and P.D.Panagiotopoulos, General Minimax Methods for Variational-Hemivariational Inequalities, submitted.

    Google Scholar 

  11. D. Goeleven and D. Motreanu, Eigenvalue and Dynamic Problems for Variational and Hemivariational Inequalities, Comm. Appl. Nonl. Analysis 3 (1996), 1–21.

    MathSciNet  MATH  Google Scholar 

  12. L.T. Hu, Homotopy Theory, Academic Press, New York, 1959.

    MATH  Google Scholar 

  13. G. Lefter, Critical Point Theorms for Lower Semicontinuous Functions, University of Iasi, unpublished manuscript.

    Google Scholar 

  14. P. Mironescu and V. Radulescu, A Multiplicity Theorem for Locally Lipschitz Periodic functionals, J. Math. Anal. Appl. 195 (1995), 621–637.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Motreanu, Existence of Critical Points in a General Setting, Set-Valued Anal. 3 (1995), 295–305.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Motreanu, A Multiple Linking Minimax Principle, Bull. Austral. Math. Soc. 53 (1996), 39–49.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Motreanu and Z. Naniewicz, Discontinuous Semilinear Problems in Vector-Valued Function Spaces, Differ. Int. Equations 9 (1996), 581–598.

    MathSciNet  MATH  Google Scholar 

  18. D. Motreanu and P.D.Panagiotopoulos, Nonconvex Energy Functions, Related Eigenvalue Hemivariational Inequalities on the Sphere and Applications, J. Global Optimization 6 (1995), 163–177.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Motreanu and P.D. Panagiotopoulos, An Eigenvalue Problem for a Hemivariational Inequality Involving a Nonlinear Compact Operator, Set-Valued Anal. 3 (1995), 157–166.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Motreanu and P.D. Panagiotopoulos, A Minimax Approach to the Eigenvalue Problem of Hemivariational Inequalities and Applications, Applicable Anal. 58 (1995), 157–166.

    Article  MathSciNet  Google Scholar 

  21. D. Motreanu and P.D.Panagiotopoulos, On the Eigenvalue Problem for Hemivariational Inequalities: Existence and Multiplicity of Solutions, J. Math. Anal. Appl. 197 (1996), 75–89.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Motreanu and P.D.Panagiotopoulos, Double Eigenvalue Problems for Hemivariational Inequalities, Arch. Rational Mech. Anal. 140 (1997), 225–251.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.R. Munkres, Elementary Differential Topology, Princeton University Press, Princeton, 1966.

    MATH  Google Scholar 

  24. Z. Naniewicz, Hemivariational Inequalities with Functions Fulfilling Directional Growth Condition, Applicable Anal. 55 (1994), 259–285.

    Article  MathSciNet  MATH  Google Scholar 

  25. Z. Naniewicz and P.D.Panagiotopoulos, Mathematical Theory of Hemnivariational Inequalities and Applications, Marcel Dekker, Inc., New York, 1995.

    Google Scholar 

  26. P.D.Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser Verlag, Basel, Boston, 1985 (Russian Translation MIR Publ. Moscow, 1989).

    Book  MATH  Google Scholar 

  27. P.D.Panagiotopoulos, Hemivariational Inequalites. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993.

    Book  Google Scholar 

  28. P.D.Panagiotopoulos, G. Stavroulakis: A Variational — Hemivariational Inequality Approach to the Laminated Plate Theory under Subdifferential Boundary Conditions, Quart. Appl. Math. 46 (1988), 409–430.

    MathSciNet  MATH  Google Scholar 

  29. PH. Rabinowitz, Some Minimax Theorems and Applications to Nonlinear Partial Differential Equations, in: Nonlinear Analysis: A collection of papers in honor of Erich Röthe, Academic Press, New York, 1978.

    Google Scholar 

  30. P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. CBMS Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence, R.I., 1986.

    Google Scholar 

  31. E.H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  32. A. Szulkin, Minimax Principles for Lower Semicontinuous Functions and Applications to Nonlinear Boundary Value Problems, Ann. Inst. Henri Poincaré. Analyse non linéaire 3 (1986), 77–109.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Motreanu, D., Panagiotopoulos, P.D. (1999). Minimax Methods for Variational-Hemivariational Inequalities. In: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Nonconvex Optimization and Its Applications, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4064-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4064-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6820-5

  • Online ISBN: 978-1-4615-4064-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics