Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 29))

  • 264 Accesses

Abstract

This chapter is devoted to the calculus developed by Clarke [9]–[14] for locally Lipschitz functions on Banach spaces, and some elements of the theory of hemivariational inequalities. We restrict ourselves to those basic elements of Clarke’s theory that are needed in the sequel. Precisely, we discuss generalized directional derivative and generalized gradient, Lebourg’s mean value theorem, chain rule, generalized gradient of integral functions and of restrictions to submanifolds. Finally, the definition of critical point in the sense of Chang [8] for a locally Lipschitz function is given and the relationship between the hemivariational inequalities and the generalized critical point problem is stressed. We close this chapter with some elements from the mathematical theory of hemivariational inequalities [33], [36], [37].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamand R, Robbin J (1967) Transversal Mappings and Flows. Benjamin, New York

    Google Scholar 

  2. Ambrosetti A, Rabinowitz RH (1973) Dual Variational Methods in Critical Point Theory. J Fund Anal 14:349–381

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin JP, Clarke FH (1979) Shadow Prices and Duality for a Class of Optimal Control Problems. SIAM J Control Optimization 17:567–586

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubin JP, Frankovska H (1990) Set-Valued Analysis. Birkhäuser Verlag, Basel, Boston

    MATH  Google Scholar 

  5. Barbu V (1982) Necessary Conditions for Multiple Integral Problem in the Calculus of Variations. Math Ann 260:175–189

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbu V (1989) Mathematical Methods in Optimization of Differential Systems (in Romanian). Ed. Acad, Bucuresti

    Google Scholar 

  7. Brézis H (1992) Analyse Fonctionnelle. Théorie et Applications, Masson, Paris

    Google Scholar 

  8. Chang KC (1981) Variational Methods for Non-Differentiable Functionals and their Applications to Partial Differential Equations. J Math Anal Appl 80:102–129

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarke FH (1975) Generalized Gradients and Applications. Trans AMS 205:247–262

    Article  MATH  Google Scholar 

  10. Clarke FH (1976) A New Approach to Lagrange Multipliers. Math Oper Res 1:165–174

    Article  MathSciNet  MATH  Google Scholar 

  11. Clarke FH (1981) Generalized Gradients of Lipschitz Functionals. Adv Math 40:52–67

    Article  MATH  Google Scholar 

  12. Clarke FH (1983) Optimization and Nonsmooth Analysis. John Wiley & Sons, New York

    MATH  Google Scholar 

  13. Ekeland I (1979) Nonconvex Minimization Problems, Bull. (New Series). Amer Math Soc 1:443–474

    Article  MathSciNet  MATH  Google Scholar 

  14. Ekeland I, Temam R (1976) Convex Analysis and Variational Problems. North Holland, Amsterdam

    MATH  Google Scholar 

  15. Filippov AF (1967) Classical Solutions of Differential Equations with Multivalued Right-Hand Side. SIAM J Control 5:609–621

    Article  MathSciNet  MATH  Google Scholar 

  16. Goeleven D, Motreanu D, Panagiotopoulos PD (1997) Multiple Solutions for a Class of Eigenvalue Problems in Hemivariational Inequalities. Nonlinear Anal TMA 29:9–26

    Article  MathSciNet  MATH  Google Scholar 

  17. Goeleven D, Motreanu D, Panagiotopoulos PD (1997) Multiple Solutions for a Class of Hemivariational Inequalities. Involving Periodic Energy Functionals. Math Methods Appl Sciences 20:547–568

    Article  MathSciNet  MATH  Google Scholar 

  18. Goeleven D, Motreanu D, Panagiotopoulos PD (1998) Eigenvalue Problems for Variational − Hemivariational Inequalities at Resonance. Nonlin Anal TMA 33:161–180

    Article  MathSciNet  MATH  Google Scholar 

  19. Graves LM (1950) Some Mappings Theorems. Duke Math J 17:111–114

    Article  MathSciNet  MATH  Google Scholar 

  20. Ioffe AD, Levin VL (1972) Subdifferentials of Convex Functions. Trans Moscow Math Soc 26:1–72

    MathSciNet  Google Scholar 

  21. Lebourg G (1975) Valeur moyenne pour gradient généralisé. C R Acad Sci Paris 281:795–797

    MathSciNet  MATH  Google Scholar 

  22. Kavian O (1993) Introduction à la théorie des points critiques et applications aux problemes elliptiques. Springer-Verlag, Paris

    MATH  Google Scholar 

  23. Michel P, Penot JP (1992) A Generalized Derivative for Calm and Stable Functions. Diff Int Equations 5:433–454

    MathSciNet  MATH  Google Scholar 

  24. Motreanu D (1995) Existence of Critical Points in a General Setting. Set-Valued Anal 3:295–305

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Motreanu, Nonlinear Eigenvalue Problems with Constraints, Topological Meth. in Nonlin. Anal., (to appear).

    Google Scholar 

  26. Motreanu D, Naniewicz Z (1996) Discontinuous Semilinear Problems in Vector Valued Function Spaces. Differ Int Equations 9:581–598

    MathSciNet  MATH  Google Scholar 

  27. Motreanu D, Panagiotopoulos PD (1993) Hysteresis: The Eigenvalue Problem for Hemivariational Inequalities, in: Models of Hysteresis. Longman Scientißc Publ, Harlow, pp 102–117

    Google Scholar 

  28. Motreanu D, Panagiotopoulos PD (1995) A Minimax Approach to the Eigenvalue Problem of Hemivariational Inequalities. Appl Anal 58:53–76

    Article  MathSciNet  MATH  Google Scholar 

  29. Motreanu D, Panagiotopoulos PD (1995) Nonconvex Energy Functions, Related Eigenvalue Hemivariational Inequalities on the Sphere and Applications. J Global Optimiz 6:163–177

    Article  MathSciNet  MATH  Google Scholar 

  30. Motreanu D, Panagiotopoulos PD (1995) An Eigenvalue Problem for a Hemivariational Inequality Involving a Nonlinear Compact Operator. Set-Valued Analysis 3:157–166

    Article  MathSciNet  MATH  Google Scholar 

  31. Motreanu D, Panagiotopoulos PD (1996) On the Eigenvalue Problem for Hemivariational Inequalities: Existence and Multiplicity of Solutions. J Math Anal Appl 197:75–89

    Article  MathSciNet  MATH  Google Scholar 

  32. Motreanu D, Pavel NH (1982) Quasi-tangent Vectors in Flow-Invariance and Optimization Problems on Banach Manifolds. J Math Anal Appl 88:116–132

    Article  MathSciNet  MATH  Google Scholar 

  33. Naniewicz Z, Panagiotopoulos PD (1995) Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, Inc., New York

    Google Scholar 

  34. Panagiotopoulos PD (1981) Nonconvex Superpotentials in the Sense of F. H. Clarke and Applications. Mech Res Comm 8:335–340

    Article  MathSciNet  MATH  Google Scholar 

  35. Panagiotopoulos PD (1991) Coercive and Semicoercive Hemivariational Inequalities. Nonlin Anal TMA 16:209–231

    Article  MathSciNet  MATH  Google Scholar 

  36. Panagiotopoulos PD (1985) Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser Verlag, Basel, Boston (Russian translation, MIR Publisher, Moscow, 1989)

    Book  MATH  Google Scholar 

  37. Panagiotopoulos PD (1993) Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  38. Rabinowitz PH (1975) Variational Methods for Nonlinear Eigenvalue Problems, in: Eigenvalues of Nonlinear Problems. C.I.M.E, Edizioni Cremonese, Roma, pp 141–195

    Google Scholar 

  39. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Mathnn Soc., Providence, R. I., 1986.

    Google Scholar 

  40. Rauch J (1977) Discontinuous Semilinear Differential Equations and Multiple Valued Maps. Proc Amer Math Soc 64:277–282

    Article  MathSciNet  MATH  Google Scholar 

  41. Rockafellar RT (1979) The Theory of Subgradients and its Applications to Problems of Optimization. Convex and Nonconvex Functions, Heldermann Verlag, Berlin

    Google Scholar 

  42. Schechter M, Tintarev K (1990) Spherical Maxima in Hilbert Space and Semilinear Elliptic Eigenvalue Problems. Differ Int Equations 3:889–899

    MathSciNet  MATH  Google Scholar 

  43. Schechter M, Tintarev K (1991) Points of Spherical Maxima and Solvability of Semilinear Elliptic Equations. Can J Math 43:825–831

    Article  MathSciNet  MATH  Google Scholar 

  44. Szulkin A (1986) Minimax Principles for Lower Semicontinuous Functions and Applications to Nonlinear Boundary Value Problems. Ann Inst Henri Poincaré, Anal Non Linéaire 3:77–109

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Motreanu, D., Panagiotopoulos, P.D. (1999). Elements of Nonsmooth Analysis. Hemivariational Inequalities. In: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Nonconvex Optimization and Its Applications, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4064-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4064-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6820-5

  • Online ISBN: 978-1-4615-4064-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics