Skip to main content

Numerical Integration of Partial Differential Equations Using Principles of Multidimensional Wave Digital Filters

  • Chapter
Parallel Processing on VLSI Arrays

Abstract

Physical systems described by partial differential equations (PDEs) are usually passive (due to conservation of energy) and furthermore massively parallel and only locally interconnected (due to the principle of action at proximity, as opposed to action at a distance). An approach is developed for numerically integrating such PDEs by means of algorithms that offer massive parallelism and require only local interconnections. These algorithms are based on the principles of multidimensional wave digital filtering and amount to directly simulating the actual physical system by means of a discrete passive dynamical system. They inherit all the good properties known to hold for wave digital filters, in particular the full range of robustness properties typical for these filters. In this paper, only the linear case is considered, with particular emphasis on systems of PDEs of hyperbolic type. The main features are explained by means of an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Rabenstein, “A signal processing approach to the numerical solution of partial differential equations,” in NTG-Fachbericht 84, Berlin: VDE-Verlag, 1983.

    Google Scholar 

  2. R. Rabenstein, “A signal processing approach to the digital simulation of multidimensional continuous systems,” Proc. Eur. Signal Processing Conf., Part 2, The Hague, The Netherlands, Amsterdam: North Holland 1986, pp. 665–668.

    Google Scholar 

  3. A. Fettweis, “Wave digital filters: Theory and practice,” Proc. IEEE, vol. 74, 1986, pp. 270–327.

    Article  Google Scholar 

  4. A. Fettweis, “New results in wave digital filtering,” Proc. URSI Int. Symp. on Signals, Systems, and Electronics, Erlangen, W. Germany, 1989: pp. 17–23.

    Google Scholar 

  5. A. Fettweis and G. Nitsche, “Numerical integration of partial differential equations by means of multidimensional wave digital filters,” Proc. IEEE Int. Symp. Circuits and Systems, vol. 2, New Orleans, LA, May 1990, pp. 954–957.

    Article  Google Scholar 

  6. H.D. Fischer, “Wave digital filters for numerical integration,” ntz-Archiv, vol. 6, 1984, pp. 37–40.

    Google Scholar 

  7. K. Meerkötter and R. Scholz “Digital simulation of nonlinear circuits by wave digital filters,” Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, Portland, OR, 1989, pp. 720–723.

    Article  Google Scholar 

  8. A. Fettweis, “On assessing robustness of recursive digital filters,” European Transactions on Telecommunications, vol. 1, 1990, pp. 103–109.

    Article  Google Scholar 

  9. B.J. Alder, “Special Purpose Computers,” San Diego: Academic Press, 1988.

    MATH  Google Scholar 

  10. Xiaojian Liu and Alfred Fettweis, “Multidimensional digital filtering by using parallel algorithms based on diagonal processing,” Multidimensional Systems and Signal Processing, vol. 1, 1990, pp. 51–56.

    Article  MATH  Google Scholar 

  11. P.B. Johns and R.L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,” Proc. IEE, vol. 118, No. 9, 1971, pp. 1203–1208.

    Google Scholar 

  12. P.B. Johns, “A Symmetrical Condensed Node for the TLM Method,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, 1985, pp. 882–893.

    Google Scholar 

  13. Tatsuo Itoh, Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, New York: J. Wiley, 1989.

    Google Scholar 

  14. Wolfgang Hoefer, “The transmission line matrix (TLM) method,” in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (T. Itoh, ed.), 1989, pp. 496–591.

    Google Scholar 

  15. K.S. Yee, “Numerical solution of initial bondary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, 1966, pp. 302–307.

    Google Scholar 

  16. A. Taflove and M.E. Brodwin, “Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equations,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, 1975, pp. 623–630.

    Article  Google Scholar 

  17. T. Weiland, “On the unique numerical solution of Maxwellian eigenvalue problems in three dimensions,” Particle Accelerators, vol. 17, 1985, pp. 227–242.

    Google Scholar 

  18. K. Meerkötter, “Incremental passivity of wave digital filters,” Proc. Eur. Signal Processing Conference, Lausanne, Switzerland, Amsterdam: North Holland, 1980, pp. 27–31.

    Google Scholar 

  19. A. Fettweis, “Passivity and losslessness in digital filtering,” Arch. Elektron. Öbertr., vol. 42, 1988, pp. 1–8.

    Google Scholar 

  20. V. Belevitch, Classical Network Theory, San Francisco: Holden-Day, 1967.

    Google Scholar 

  21. A. Kummert and M. Pätzold, private communication, 1989.

    Google Scholar 

  22. W. Hackbusch, Multi-grid Methods and Applications, Berlin: Springer-Verlag, 1985.

    Book  MATH  Google Scholar 

  23. R.E. Crochiere and L.R. Rabiner, Multirate Digital Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1983.

    Google Scholar 

  24. A.A. Samarskij, Theorie der Differenzenverfahren, Leipzig: Akademische Verlagsgesellschaft, 1984.

    MATH  Google Scholar 

  25. A. Fettweis and K. Meerkötter, “On adaptors for wave digital filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-23, 1975, pp. 516–525.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media, New York

About this chapter

Cite this chapter

Fettweis, A., Nitsche, G. (1991). Numerical Integration of Partial Differential Equations Using Principles of Multidimensional Wave Digital Filters. In: Nossek, J.A. (eds) Parallel Processing on VLSI Arrays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4036-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4036-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6805-2

  • Online ISBN: 978-1-4615-4036-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics