Skip to main content

Dynamic Re-wiring of CPG Circuits in a Simple Nervous System

  • Chapter
Analysis and Modeling of Neural Systems

Abstract

The pyloric CPG in the stomatogastric nervous system of crustaceans can produce a wide repertoire of motor patterns, both in vivo and in vitro. This flexibility in the network operation, relies on endogenous properties shared by all the neurons of the pyloric network, i.e. the ability to produce endogenous bursting pacemaker potentials. These properties are controlled by modulatory inputs. By inducing, modulating and suppressing regenerative properties of the pyloric neurons, modulatory inputs can start, maintain and terminate a basic pyloric pattern. They can also transform this basic pattern by changing period of the rhythm, phasing, duration and intensity of neuronal discharges, and number of active neurons. Finally, simultaneous modulation of several networks can create complex patterns, switch neurons between two circuits and fuse several CPGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delcomyn F. (1980) Science 210: 492–498

    Article  Google Scholar 

  2. McCrohan C.R. (1988) Comp. Biochem. Physiol. A 90: 17–22

    Article  Google Scholar 

  3. Nagy F. and Moulins M. (1987) In: Selverston A. I. and Moulins M. (eds) The crustacean stomatogastric system. Springer, Berlin, pp 205–242

    Chapter  Google Scholar 

  4. Getting P.A. (1989) Ann. Rev. Neurosci. 12: 185–204

    Article  Google Scholar 

  5. Harris-Warrick R.M. (1988) In: Cohen A.H., Rossignol S. and Grillner S. (eds) Neural control of rhythmic movements. Wiley, New York, pp 285–331

    Google Scholar 

  6. Selverston A.I. and Moulins M. (1987) eds. The crustacean stomatogastric system. Springer, Berlin, 338p

    Google Scholar 

  7. Miller J.P. (1987) In: Selverston A.I. and Moulins M. (eds) The crustacean stomatogastric system. Springer, Berlin, pp 109–136

    Book  Google Scholar 

  8. Rezer E. and Moulins M. (1983) J. Comp. Physiol. A 153: 17–28

    Article  Google Scholar 

  9. Bal T., Nagy F. and Moulins M. (1988) J. Comp. Physiol. A 163: 715–727

    Article  Google Scholar 

  10. Miller J.P. and Seiverston A.I. (1982) J. Neurophysiol. 48: 1378–1391

    Google Scholar 

  11. Marder E. (1987) In Selverston AI. and Moulins M. (eds) The crustacean stomatogastric system. Springer, Berlin, pp 263–300

    Book  Google Scholar 

  12. Claiborne B J. and Selverston AI. (1984) J. Comp. Physiol. A 154: 27–32

    Article  Google Scholar 

  13. Nagy F. and Dickinson P.S. (1983) J. exp. Biol. 105: 33–58

    Google Scholar 

  14. Dickinson P.S. and Nagy F. (1983) J. exp. Biol. 105: 59–82

    Google Scholar 

  15. Cazalets J.R., Nagy F. and Moulins M. (1990) J. Neurosci. 10: 448–457

    Google Scholar 

  16. Cazalets J.R., Nagy F. and Moulins M. (1990) J. Neurosci. 10: 458–468

    Google Scholar 

  17. Nusbaum M.P. and Marder E. (1989) J. Neurosci. 9: 1591–1599

    Google Scholar 

  18. Nusbaum M.P. and Marder E. (1989) J. Neurosci. 9: 1600–1607

    Google Scholar 

  19. Katz P.S. and Harris-Warrick R.M. (1989) J. Neurophysiol. 62: 571–581

    Google Scholar 

  20. Katz P.S. and Harris-Warrick R.M. (1990) J. Neurosci. 10: 1495–1512

    Google Scholar 

  21. Nagy F., Dickinson P.S. and Moulins M. (1988) J. Neurosci. 8: 2875–2886

    Google Scholar 

  22. Meyrand P., Simmers J. and Moulins M. Nature (submitted)

    Google Scholar 

  23. Bal T., Nagy F. and Moulins M. (1990) Neurosci. Abstr. 16: 724

    Google Scholar 

  24. Johnson B.R. and Harris-Warrick R.M. (1990) J. Neurosci. 10: 2066–2076

    Google Scholar 

  25. Dickinson P.S., Nagy F. and Moulins M. (1988) J. exp. Biol. 136: 53–87

    Google Scholar 

  26. Hooper S.L. and Moulins M. (1989) Science 244: 1587–1589

    Article  Google Scholar 

  27. Dickinson P.S., Mecsas C. and Marder E. (1990) Nature 344: 155–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagy, F., Bal, T., Cardi, P. (1992). Dynamic Re-wiring of CPG Circuits in a Simple Nervous System. In: Eeckman, F.H. (eds) Analysis and Modeling of Neural Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4010-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4010-6_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6793-2

  • Online ISBN: 978-1-4615-4010-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics