Skip to main content

GABAergic Modulation of Average Evoked Potentials in Rat Olfactory Bulb.

  • Chapter
Analysis and Modeling of Neural Systems

Abstract

The olfactory bulbar EEG alternation of inspiratory cyclic bursts and chaotic interburst activity as well as the damped sinusoidal oscillation seen in averaged evoked potentials (AEPs) and unit post-stimulus-time histograms (PSTHs) are best accounted for by modeling the bulb as a set of couple oscillators. Primary olfactory nerve (PON) induced AEPs are characterized by a damped oscillation riding a slow negative wave that is due to prolonged granule cell excitation. Antidromic stimulation via the lateral olfactory tract (LOT) also produces an oscillation in the AEP but lacks the slow negative component. The negative feedback relationship of the reciprocal synapses between mitral and granule cells in the external plexiform layer establishes these oscillators. Periglomerular (Pg) cells provide an excitatory bias which generates the slow component of the PON induced AEP. Temporal aspects of the mitral- granule oscillator network are subject to modulation from sources intrinsic and extrinsic to the bulb

The neurochemical basis of two intrinsic modulatory influences was investigated by applications of neuroactive substances acting on Gamma Amino Butyric Acid (GABA - an intrinsic glomerular layer neurotransmitter) and dopamine (an intrinsic neuromodulatory amine). Application of GABA increased the secondary component and transiently doubled the frequency of the PON-induced AEP. These effects indicated increased excitation within the glomerular layer (GI). Picrotoxin, a GABA, antagonist, or muscimol, a GABA, agonist, radically altered the frequency and amplitude of the AEP oscillation but not in a manner seen with GABA application. The GABA, agonist baclofen at low concentrations markedly increased the baseline shift and at high concentrations increased PON-induced AEP threshold High frequency signals were achieved with high concentrations of baclofen. Mitral cell firing rates tended to increase with low concentrations of baclofen but were suppressed under high concentrations. The eflects of baclofen and GABA were ascribed to glomerular excitation of mitral cells. Baclofen acted synergistically with dopamine to increase LOT-induced AEP oscillation. Histological evidence shows co-localization of GABA and dopamine in the glomerular layer. The functional significance of this action has yet to be determined

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, A.C. and R.T.T. Warwick (1949) Brain 72:186–197.

    Article  Google Scholar 

  • Andres, K.H. (1970) In CIBA Foundation Symposium on Taste and Smell in Vertebrates, pp 177–194.

    Google Scholar 

  • Anholt, R.R., K.M. Murphy, G.E. Mack and S.H. Snyder (1984) J. Neurosci. 4(2):593–603.

    Google Scholar 

  • Bowery, N.G., A.L. Hudson and G.W. Price (1987) Neurosci. 20(2):365–383.

    Article  Google Scholar 

  • Cook, P.B., B.K. Rhoades and WJ. Freeman (1988) Abs. Chem. Sens. 5:113

    Google Scholar 

  • Cook, P.B. B.K. Rhoades and W.J. Freeman (1989) Abs. Chem. Sens. 6:172

    Google Scholar 

  • DeBlas, AL., V. Vitorica, P. Friedrich (1988) J. Neurosci. 8(2): 602–614.

    Google Scholar 

  • Deisz, R.A. and D.A. Prince (1989) J. Physiol 412: 513–541.

    Google Scholar 

  • Freeman, WJ. (1972a) J. Neurophys. 35:733–744.

    Google Scholar 

  • Freeman, W.J. 1972b) J. Neurophys. 35:745–761.

    Google Scholar 

  • Freeman, WJ. 1972c) J. Neurophys. 35:762–778.

    Google Scholar 

  • Freeman, WJ. 1972d) Ann. Rev. Biophys. Bioeng. 1: 225–226

    Google Scholar 

  • Freeman, WJ. 1974a) Brain Res. 65:77–90.

    Google Scholar 

  • Freeman, WJ. 1974b) Brain Res. 65:91–107.

    Google Scholar 

  • Freeman, WJ. 1974c) IEEE Trans. Biom. Eng. 21:350–358.

    Google Scholar 

  • Freeman, WJ. (1974d) IEEE Trans. Biom. Eng. 21:358–364.

    Article  Google Scholar 

  • Freeman, WJ. (1975) Mass Action in the Nervous System. Academic Press.

    Google Scholar 

  • Gonzalez-Estrada, T., WJ. Freeman (1980) Brain Res. 202:373–386.

    Article  Google Scholar 

  • Gusel’nikova, K.G. (1970) Neurosci. Transi. 13: 88–92.

    Article  Google Scholar 

  • Kosaka, T., K. Kosaka, C.W. Heizmann, L Nagatsu J-Y. Wu, N. Yanaihara and K. Hama (1987) Brain Res. 411:373–378.

    Article  Google Scholar 

  • Martinez, D.M., WJ. Freeman (1984) Brain Res. 385:223–233.

    Article  Google Scholar 

  • Mori, K, S.F. Takagi (1978) J. Physiol (London) 279:569–588.

    Google Scholar 

  • Nickell, W.T., and M.T. Shipley (1989) Chemical Senses 14: 734.

    Google Scholar 

  • Nowycky, M.C., K Mori, and G.M. Shepherd (1981a) J.Neurophys. 43(3): 639–647.

    Google Scholar 

  • Nowycky, M.C., K. Mori, and G.M. Shepherd (1981b) J. Neurophys. 43(3): 649–658.

    Google Scholar 

  • Olpe, H.R., J. Heid, H. Bittiger, M.W. Steinmann (1987) Brain Res. 412:269–274.

    Article  Google Scholar 

  • Pinching A.J., and T.P.S. Powell (1971) J. Cell Sci. 9:305–345.

    Google Scholar 

  • Potopov, A.A., and V.V. Trepakov (1986) Byulleten’ Eksperimental’ noi Biologiii i Meditsiny, 101: 317–202.

    Google Scholar 

  • Rhoades, B.K., WJ. Freeman (1990) Abs. Chem. Sens. 7

    Google Scholar 

  • Shepherd, G.M. (1971) Synaptic Brain Res. 32:212–217

    Google Scholar 

  • Shepherd, G.M. (1972) Physiol. Rev. 52:864–917.

    Google Scholar 

  • Stone, E.A, AS. Herrera (1986) Brain Res. 384:401–403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cook, P.B., Rhoades, B.K., Freeman, W.J. (1992). GABAergic Modulation of Average Evoked Potentials in Rat Olfactory Bulb.. In: Eeckman, F.H. (eds) Analysis and Modeling of Neural Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4010-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4010-6_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6793-2

  • Online ISBN: 978-1-4615-4010-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics