Skip to main content

Hearing As Seeing Space and Time in Auditory Processing

  • Chapter
Analysis and Modeling of Neural Systems
  • 138 Accesses

Abstract

The perception of sound involves a complex array of attributes and processes, ranging from the sensation of timber, pitch, and other spectral estimates (primarily monaural tasks), to the localization and fusion of sound sources, and the cocktail-party-effect (primarily bin- aural tasks). Computational strategies proposed to describe these phenomena have mostly emphasised temporal, rather than spatial, features in the representation of sound in the auditory system. This has led to considerably divergent views of the processing (and possible underlying biological networks) in auditory versus other sensory systems, such as the visual system. Recent experimental findings from the peripheral and central auditory system, however, reveal intricate spatiotemporal neural response patterns and a multitude of spatial cues that can encode the acoustic stimulus. These results suggest a unified computational framework, and hence shared neural network architectures, for central auditory and visual processing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. K. Hartline, Studies on Excitation and Enhibition in the Retina, Rockefeller University Press, New York, 1974.

    Google Scholar 

  2. I. Darian-Smith, A. Goodwin, M. Sugitani & J. Heywood, “The tangible features of textured surfaces: Their representation in the monkey’s somatosensory cortex,” inDynamic aspects of neocortical function, G. Edelman, W. Gall & W. Cowan, eds., A Neurosciences Institute Publication, John Wiley and Sons, New York, 1984, 475–500.

    Google Scholar 

  3. B. Julesz, “Toward an axiomatic theory of preattentive vision,” in Dynamic aspects of neocortical function, G. Edelman, W. Gall & W. Cowan, eds., A Neurosciences Institute Publication, John Wiley and Sons, New York, 1984.

    Google Scholar 

  4. G. Poggio, “Processing of stereoscopic information in primate visual cortex,” in Dynamic aspects of neocortical function, G. Edelman, W. Gall & W. Cowan, eds., A Neurosciences Institute Publication, John Wiley and Sons, New York, 1984, 613–636.

    Google Scholar 

  5. H. L. Helmholtz, “Uber den muskelton,” VerhandL Natuhist. Medicin. Vereins. Heidelberg 4 (1868), 88–90.

    Google Scholar 

  6. W. D. Keidel & W. D. Neff, “Handbook of Sensory Physiology,” Berlin, 1975.

    Google Scholar 

  7. M. B. Sachs & E. D. Young, “Encoding of steady state vowels in the auditory-nerve: representation in terms of discharge rate,” J. Acoust. Soc. Am. 66 (1979), 470–479.

    Article  Google Scholar 

  8. J. O. Pickles, “The neurophysiological basis of frequency selectivity,” in Frequency Selectivity in Hearing, B. C. J. Moore, ed., Acadamic Press, London, 1986, 51–122.

    Google Scholar 

  9. E. D. Young & M. B. Sachs, “Representation of steady state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers,” J. Acoust. Soc. Am. 66 (1979), 1381–1403.

    Article  Google Scholar 

  10. M. I. Miller & M. B. Sachs, “Representation of stop consonants in the discharge patterns of auditory-nerve fibers.,” J. Acoust. Soc. Am. 74 (1983), 502–517.

    Article  Google Scholar 

  11. D. G. Sinex & C. D. Geisler, “Responses of auditory-nerve fibers to consonent-vowel syllables,” J. Acoust. Soc. Am. 73 (1983), 602–615.

    Article  Google Scholar 

  12. S. Seneff, “Pitch and spectral estimation of speech based on auditory synchrony model,” MIT, Working Papers on Linguistics, 1984.

    Google Scholar 

  13. B. Delgutte, “Speech coding in the auditory nerve: II. Processing schemes for vowel-like sounds,” J. Acoust. Soc. Am. 75 (1984), 879–886.

    Article  Google Scholar 

  14. S. A. Shamma, R. Chadwick, J. Wilbur, J. Rinzel & K. Moorish, “A biophysical model of cochlear processing: intensity dependence of pure tone responses,” J. Acoust. Soc. Am. 80 (1986), 133–145.

    Article  Google Scholar 

  15. M. H. Holmes & J. D. Cole, “Cochlear mechanics: analysis for a pure tone,” J. Acoust. Soc. Am. 76 (1984), 767–778.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. A. Shamma, “The acoustic features of speech phonemes in a model of auditory processing: Vowels and unvoiced fricatives,” J. Phonetics 16 (1988), 77–91.

    Google Scholar 

  17. S. A. Shamma, “Speech processing in the auditory system. I: Representation of speech sounds in the responses of the auditory-nerve,”J. Acoust. Soc. Am. 78 (1985), 1612–1621.

    Article  Google Scholar 

  18. S. A. Shamma, “Speech processing in the auditory system. II: Lateral inhibition and the processing of speech evoked activity in the auditory-nerve, ” J. Acoust. Soc. Am. 78 (1985), 1622–1632.

    Article  Google Scholar 

  19. S. A. Shamma, “Encoding the acoustic spectrum in the spatio-temporal responses of the auditory-nerve,” in Auditory Frequency Selectivity, B. C. J. Moore & R. Patterson, eds., Plenum Press, Cambridge, 1986, 289–298.

    Chapter  Google Scholar 

  20. David Marr, Vision, Freeman and Company, New York, 1982.

    Google Scholar 

  21. N. Durlach & S. Colburn, “Binaural phenomena,” in Handbook of Perception, E. C. Carterette & M. P. Friedman, eds. #IV, 1978, 365–466.

    Google Scholar 

  22. S. Colburn & N. I. Durlach, “Models of binaural interactions,” in Handbook of Perception, E. C. Carterette & M. P. Friedman, eds. #IV, 1978.

    Google Scholar 

  23. L. Jeffress, “A place theory of sound localization,” J. Comp. Physiol. Psych.61 (1948), 468–486.

    Google Scholar 

  24. S. Shamma, N. Shen & P. Gapalaswamy, “Stereausis: Binaural processing without neural delays,” J. Acoust. Soc. Am. 86(3)(1989), 989–1006.

    Google Scholar 

  25. D. Marr & T. Poggio, “ A computational theory of human stereo vision,” Proc. R. Soc. Lond. 204 (1979), 301–328.

    Article  Google Scholar 

  26. I. Whitfield & E. Evans, “Responses of auditory cortical neuron to stimuli of changing frequency,” J. Neurophysiol. 28 (1965), 655–672.

    Google Scholar 

  27. C. Schreiner & J. Urbas, “Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between fields. ” Hearing Res. 32 (1988), 49–64.

    Article  Google Scholar 

  28. P. Winter & H. Funkenstein, “The effect of species-specific vocalization on discharge of auditory cortical cells in the awake squirrel monkey.,” E xp. Brain Res. 18 (1973), 489–504.

    Google Scholar 

  29. I. Whitfield, “Auditory cortex and the pitch of complex tones,” J. Acoust. Soc. Am. 67 (1980), 644–647.

    Article  Google Scholar 

  30. W. Neff, W. Diamond & J. Casseday, “Behavioral studies of auditory discrimination: Central nervous system.,” in Handbook of Sensory Physiology, W. Keidel & W. Neff, eds. #2 Springer-Verlag, Berlin, 1975, 307–400..

    Google Scholar 

  31. M. Merzenich, P. Knight & G. Roth, “Representation of cochlea within primary auditory cortex in the cat,” J. Neurophysiol. 28 (1975), 231–249.

    Google Scholar 

  32. R. Reale & T. Imig, “Tonotopic organization of auditory cortex in the cat. ” J. Comp. Neurol. 192 (1980), 265–291.

    Article  Google Scholar 

  33. T. Imig & H. Adrian, “Binaural columns in the primary field (AI) of cat auditory cortex,” Brain Res. 138 (1977), 241–257.

    Article  Google Scholar 

  34. J. Middlebrooks, P. Dykes & M. Merzenich, “Binaural response-specific bands in primary auditory cortex (AI) of the cat: Topographical organization orthogonal to isofrequency contours,” Brain Res. 181 (1980), 31–48.

    Article  Google Scholar 

  35. D. Hubel & T. Wiesel, “Receptive Fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160 (1962), 106–154.

    Google Scholar 

  36. J. Wenstrup, L. Ross & G. Pollak, “Binaural response organization within a frequency band representation of the inferior colliculus: implications for sound localization,” J. Neu-roscience 6 (1986), 962–973.

    Google Scholar 

  37. J. Mendelson, C. Schreiner, K. Grasse & M. Sutter, “Spatial distribution of responses to FM sweeps in cat primary auditory cortex,” Proc. 11th A.R.O. meeting (1988).

    Google Scholar 

  38. C. Schreiner, J. Mendelson 1279 K. Grasse & M. Sutter, “Spatial distribution of basic response properties in cat primary auditory cortex,” Proc. 11th A.R.O. meeting (1988).

    Google Scholar 

  39. S. Shamma, J. Fleshman & P. Wiser, “Receptive Field Organization in Primary Auditory Cortex: Spectral Orientation Columns.” Systems Research Center Tech. Report (TR 90–46) (1990).

    Google Scholar 

  40. S. Zeki & S. Shipp, “The functional logic of cortical connections,” Nature 335 (1988), 311–317.

    Article  Google Scholar 

  41. D. Klatt, “Prediction of perceived phonetic distance from critical-band spectra: A first step,” Proc. ICASSP 82 (1982), 1278.

    Google Scholar 

  42. P. Assmann & Q. Summerfield, “Modelling the perception of concurrent vowels: Vowels with the same fundamental frequency,” J. Acoust. Soc. Am. 85 (1988), 327.

    Article  Google Scholar 

  43. D. O’Leary, “Do cortical areas emerge from a protocortex?,” Trends in Neuroscience 12 (1989), 400–406.

    Article  Google Scholar 

  44. M. Sur, P. Garraghty & A. Roe, “Experimentally induced visual projections into auditory thalamus and cortex,” Science 242 (1988), 1437–1441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shamma, S.A. (1992). Hearing As Seeing Space and Time in Auditory Processing. In: Eeckman, F.H. (eds) Analysis and Modeling of Neural Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4010-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4010-6_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6793-2

  • Online ISBN: 978-1-4615-4010-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics