Skip to main content

Retinal circuits for daylight: why ballplayers don’t wear shades

  • Chapter

Abstract

A natural scene contains fine spatial detail at low contrast (Srinivasan et al., 1982), and to represent it as an optical image on the retina requires quite a lot of light This is because the number of photons arriving at a given locus fluctuates according to Poisson statistics. For an image to emerge above this fluctuating background of “photon noise” an object must be brighter than the mean luminance by at least one standard deviation (corresponding to the square root of the mean luminance) (Rose, 1973). Consider an example from baseball, a high fly ball just barely visible against the bright sky. At 100 meters from the outfielder’s eye the ball subtends only 12 cones and is brighter than the sky by about 0.3 %. To represent this low contrast spot requires that the ball reflect onto the retina at least 12 × 104 photons per cone integration time (√(12 × 104) /12 × 104 = 0.3%). The number of extra photons per cone above the mean is only 30.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attwell, D. (1986) Ion channels and signal processing in the outer retina. Quart. J. Exp. Physiol. 71:497–536.

    Google Scholar 

  • Banks, M.S., Geisler, W.S. and Bennett, PJ. (1987) The physical limits of grating visibility. Vision Res. 27:1915–1924.

    Article  Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F. and O’Bryan, P.M. (1971) Receptive fields of cones in the retina of the turtle. J. Physiol. 214:265–294.

    Google Scholar 

  • Boycott, B.B., Peichl, L. and Wässle, H. (1978) Morphological types of horizontal cell in the retina of the domestic cat. Proc. R. Soc. Lond. B203:229–245.

    Article  Google Scholar 

  • Boycott, B.B. and Wässle, H. (1974) The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol. Lond. 240:397–419.

    Google Scholar 

  • Chun, M.H. and Wässle, H. (1989) GAB A-like immunoreactivity in the cat retina: electron microscopy. J. Comp. Neurol. 279:55–67.

    Article  Google Scholar 

  • Cleland, B.G., Harding, T.H. and Tulunay-Keesey, U. (1979) Visual resolution and receptive field size: Examination of two kinds of cat retinal ganglion cell. Science 205:1015–1017.

    Article  Google Scholar 

  • Cohen, E. and Sterling, P. (1990a) Demonstration of cell types among cone bipolar neurons of cat retina. Phil. Trans. Roy. Soc. (London) B 330:305–321.

    Article  Google Scholar 

  • Cohen, E. and Sterling, P. (1990b) Convergence and divergence of cones onto bipolar cells in the central area of the cat retina. Phil. Trans. Roy. Soc. (London) B 330:323–328.

    Article  Google Scholar 

  • Cohen, E. and Sterling, P. ( 1991) Microcircuitry related to the receptive field center of the on-beta ganglion cell. J. Neurophysiol. 65: 352–359.

    Google Scholar 

  • Derrington, A.M. and Lennie, P. (1982) The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in the cat. J. Physiol. 333:343–366.

    Google Scholar 

  • Enroth-Cugell, C. and Robson, J.G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. J.Physiol. 187:517–552.

    Google Scholar 

  • Kernighan, B.W. and Ritchie, D.M. (1978) The CProgramndngLanguage. Prentice-Hall, London.

    Google Scholar 

  • Kolb, H. (1977) The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations. J. Neurocytol. 6:131–153,1977.

    Article  Google Scholar 

  • Laughlin, S. (1987) Form and function in retinal processing. Trends Neurosci. 10:478–483.

    Article  Google Scholar 

  • Linsenmeier, R.A., Frishman, L.J., Jakiela, H.G., and Enroth-Cugell, C. (1982) Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements. Vision Res. 22:1173–1183.

    Article  Google Scholar 

  • Nelson, R. and Kolb, H. ( 1983) Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res. 23:1183–1195.

    Article  Google Scholar 

  • Pelli, D.G. (1990) The quantum efficiency of human vision. In Vision: Coding and Efficiency, C. Blakemore, ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rose, A. (1973) Vision,-human and electronic. Plenum Press, New York-London.

    Google Scholar 

  • Smith, R.G., Freed, M. and Sterling, P. (1986) Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J. Neurosci. 6:3505–3517.

    Google Scholar 

  • Smith, R.G. and Sterling, P. ( 1990) Cone receptive field in cat retina computed from microcircuitry. Visual Neuroscience, 5: 453–461.

    Article  Google Scholar 

  • Srinivasan, M.V., Laughlin, S.B. and Dubs, A. (1982) Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. 216:427–459.

    Article  Google Scholar 

  • Sterling, P., Freed, M.,and Smith, R.G. (1988) Architectureofrodandconecircuits to the on-beta ganglion cell. J. Neurosci. 8:623–642.

    Google Scholar 

  • Tessier-Lavigne, M. and Attwell, D. (1988) The effect of photoreceptor coupling and synapse nonlinearity on signal:noise ratio in early visual processing. Proc. R. Soc. Lond. B 234:171–197.

    Article  Google Scholar 

  • Tsukamoto, Y., Smith, R.G. and Sterling, P. (1990) “Collective coding” of correlated signals in the retinal ganglion cell. Proc. Natl. Acad. Sci. USA 87:1860-1864.

    Google Scholar 

  • Wässle, H., Boycott, B.B. and Illing, R.B. (1981) Morphology and mosaic of on-and off-beta cells in the cat retina and some functional considerations. Proc. R. Soc. Lond. B. 212:177–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sterling, P., Cohen, E., Smith, R.G., Tsukamoto, Y. (1992). Retinal circuits for daylight: why ballplayers don’t wear shades. In: Eeckman, F.H. (eds) Analysis and Modeling of Neural Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4010-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4010-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6793-2

  • Online ISBN: 978-1-4615-4010-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics