Skip to main content

The Role of Microstructure in Thermal Fatigue of Pb-Sn Solder Joints

  • Chapter
Solder Joint Reliability

Abstract

The Pb-Sn eutectic alloy is widely used as a joining material in the electronics industry. In this application the solder acts as both an electrical and mechanical connection within and among the different packaging levels in an electronic device. Advances in packaging technologies driven by the desire for miniaturization and increased circuit speed result in severe operating conditions for the solder joint and thus solder joint reliability problems. Specifically, the mismatched thermal expansion characteristics of the materials joined by the solder and the cyclic temperature fluctuations normally encountered during service constitute a condition of thermal fatigue for the constrained solder. This is especially a problem in the surface mounting of leadless components where a shearing of the solder joint occurs with each temperature excursion. Repeated temperature cycling, such as that associated with Joule heating as the device is turned on and off, and environmental temperature changes fatigue the solder joint ultimately causing its failure. Increased solder joint reliability and the development of new more fatigue-resistant solder alloys require a fundamental understanding of the metallurgical mechanisms operative during the fatigue cycle and, hence, an understanding of the solder microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grivas, D., D. Frear, L. K. Quan, and J. W. Morris, Jr., J. Electr. Mat.,15,1986, p. 355.

    Article  Google Scholar 

  2. Frear, D., D. Grivas, L.K. Quan, and J. W. Morris, Jr., MRS Symposium, 72 1986, p. 181.

    Article  Google Scholar 

  3. Frear, D., D. Grivas, and J.W. Morris, Jr., J. Electr. Mat., 17 1988, p. 171.

    Article  Google Scholar 

  4. McLean, M., Directionally Solidified Eutectics, The Metals Society, London, 1983.

    Google Scholar 

  5. Shewmon, P. G., Transformations in Metals, J. Williams Book Co., OK, 1983.

    Google Scholar 

  6. Elliott, R., Eutectic Solidification Processing, Butterworths, London, 1983.

    Google Scholar 

  7. Verhoeven, J. D., D. P. Mourer, and E. D. Gibson, Met Trans. A, 8A, 1977, pp. 1239–1247.

    Article  Google Scholar 

  8. Hunt, J. D., J. Inst. Met. 94 1964, pp. 125–129.

    Google Scholar 

  9. Hopkins, R.H., and R. W. Kraft, Trans. AIME, 242 1968, pp. 1627–1633.

    Google Scholar 

  10. Labulle, B., and C. Petipas, J. Cryst. Growth, 28 1975, pp. 279–287.

    Article  Google Scholar 

  11. Blanchin, M. G., A. Guinier, C. Petipas, and G. Sauvage, Acta Met., 20 1972, pp. 1251–1258.

    Article  Google Scholar 

  12. Cagnon, M., M. Suery, A. Eberhardt, and B. Baudelet, Acta Met. 25 1977, pp. 71–75.

    Article  Google Scholar 

  13. Chilton, J. P., and W. C. Winegard, J. Inst. Met., 89 1960, pp. 162–164.

    Google Scholar 

  14. Weart, H. W., and D. J. Mack, Trans. Met. Soc. AIME, 10 1958, pp. 664–670.

    Google Scholar 

  15. Quan, L. K., “Tensile and Shear Behavior of Alloyed Sn-Pb Solder Joints,” M.S. Thesis, University of California, Berkeley, 1988.

    Google Scholar 

  16. Specimen courtesy of J. Maki, EMPF, China Lake, CA.

    Google Scholar 

  17. Frear, D., D. Grivas, J. W. Morris, Jr., J. Elect. Mat., 16 1987, p. 181.

    Article  Google Scholar 

  18. Frear, D., D. Grivas, J. W. Morris, Jr.,J. Elect. Mat., 17 1988, p. 171.

    Article  Google Scholar 

  19. Frear, D., D. Grivas, J. W. Morris, Jr.,J. Met., 40 1988, p. 18.

    Google Scholar 

  20. Tribula, D., D. Grivas, D. Frear, and J. W. Morris, Jr., Weld. J. Res. Supp., 68 1989, p. 404s.

    Google Scholar 

  21. Eady, J. A., and W. C. Winegard, Can. Met. Quart., 10(3) 1971, pp. 213–214.

    Article  Google Scholar 

  22. Kraft, R. W., D. L. Albright, J. A. Ford, Trans. Met. Soc. AIME, 227 1962, pp. 540–552.

    Google Scholar 

  23. Kraft, R. W., J. Met., 2 1966, pp. 192–200.

    Google Scholar 

  24. Cline, H. E., and T. H. Alden, Trans. AIME, 239 1967, pp. 710–714.

    Google Scholar 

  25. Avery, D. H., and W. A. Backhofen, Trans. ASM, 58 1965, pp. 551–562.

    Google Scholar 

  26. Morrison, W. B., Trans. AIME, 242 1968, 2221–2227.

    Google Scholar 

  27. Kashyap, B. P., and G. S. Murty, Mat. Sci. and Eng. 50 1981, pp. 205–213.

    Article  Google Scholar 

  28. Frebel, M., and B. Otte, Scripta Met., 9 1975, p. 1317.

    Article  Google Scholar 

  29. Graham, L. D., and R. W. Kraft, Trans. AIME, 236 1966, p. 94.

    Google Scholar 

  30. Frebel, M., G. Duddek, W. Graf, M. N. Faridani, and B. Otte, B. Bunsenges Phys. Chem., 82 1978, pp. 259–265.

    Google Scholar 

  31. Livingston, J. D., and J. W. Cahn, Acta Met., 22 1974, p. 495.

    Article  Google Scholar 

  32. Frebel, M., and G. Duddek, Mat. Sci. Eng., 32 1974, p. 125.

    Google Scholar 

  33. Kashyap, B. P., and G. S. Murty, Met. Trans. A., 13A 1982, pp. 53–58.

    Article  Google Scholar 

  34. Fine, M., and R. L. Dowdell, Trans. ASM, 37 1946, pp. 245–277.

    Google Scholar 

  35. Baker, W. A., J. Inst. Met., 65 9 1939, pp. 277–300.

    Google Scholar 

  36. Pearson, C. E., J. Inst. Met., 54 1934, pp. 110–124.

    Google Scholar 

  37. Jenkins, C. H. M., J. Inst. Met., 40 1928, pp. 21–39.

    Google Scholar 

  38. Rack, H. J., and J. K. Maurin, J. Test. and Eval., 2(5), 1974, pp. 351–353.

    Article  Google Scholar 

  39. Inoue, H., Y. Kurihara, and H. Hachino, IEEE Trans. CHMT-12, 1986, p. 190.

    Google Scholar 

  40. Hargreaves, F., J. Inst. Met., 40 1928, p. 41.

    Google Scholar 

  41. Hargreaves, F.,J. Inst. Met., 39 1928, p. 301.

    Google Scholar 

  42. Hargreaves, F. and J. Hills, J. Inst. Met., 41 1929, p. 257.

    Google Scholar 

  43. Bird, J. E., A. K. Mukherjee, and J. F. Dorn, Quantitative Relations Between Properties and Microstructure, Israel University Press, 1969.

    Google Scholar 

  44. Zehr, S. W., and W. A. Backhofen, Trans. ASM, 61, 1968, pp. 300–313.

    Google Scholar 

  45. Mukherjee, A.K., J. E. Bird, and J. F. Dorn, Trans. ASM 62 1969, p. 155.

    Google Scholar 

  46. Weertman, J., and J. R. Weertman Physical Metallurgy,R. W. Cahn, P. Haasen, Eds., Elsevier Science Publishers, 1983, p. 1310.

    Google Scholar 

  47. Vaidya, M. L., K. L. Murty, and J. E. Dorn, Acta. Met., 21 1973, p. 1616.

    Article  Google Scholar 

  48. Mohamed, F. A., K. L. Murty, and J. W. Morris, Jr., Met. Trans., 4 1973, p. 935.

    Article  Google Scholar 

  49. Grivas, D., “Steady State Creep in Pb-Sn Eutectic Alloys,” M.S. thesis, University of California, Berkeley, CA, 1974.

    Google Scholar 

  50. Murty, G. S., J. Mat. Sci., 8 1973, p. 611.

    Article  Google Scholar 

  51. Grivas, D., “Deformation of Superplastic Alloys of Relatively Low Strain Rates,” Ph.D. Thesis, University of California, Berkeley, CA, 1979.

    Google Scholar 

  52. Schneibel, J. H., and P. M. Hazzledine, J. Mat. Sci., 18 1983, pp. 562–570.

    Article  Google Scholar 

  53. Geckinli, A. E., and C. R. Barrett, J. Mat. Sci., 11 1976, pp. 510–521.

    Article  Google Scholar 

  54. Murty, G. S., and B. P. Kashyap, Trans. Ind. Inst. Met., 37(5), 1984, pp. 509–513.

    Google Scholar 

  55. Mohamed, F. A., and T. G. Langdon, Phil. Mag., 1975, pp. 697–709.

    Google Scholar 

  56. Yadava, R. K., and K. A. Padmanabhan, J. Mat. Sci., 17 1982, pp. 2435–2440.

    Article  Google Scholar 

  57. Baudelet, B., and M. Suery, J. Mat. Sci., 7 1972, pp. 512–516.

    Article  Google Scholar 

  58. Kashyap, B. P., and G. S. Murty, Met. Trans. A., 12A, 1981, pp. 1923–1925.

    Article  Google Scholar 

  59. Yadava, R. K., and K. A. Padmanabhan, Mat. Sci. and Eng., 37 1979, 127–136.

    Article  Google Scholar 

  60. B. P. Kashyap, A. Arieli, and A. K. Mukherjee, J. Mat. Sci., 20 1985, pp. 2662–2686.

    Article  Google Scholar 

  61. Rohde, R. W., and J. C. Swearengen, Trans ASME, J. Eng. Mat. and Tech., 102 1980, p. 207.

    Article  Google Scholar 

  62. Weinbell, R. C., J. K. Tien, R. A. Pollack, and S. K. Kang, J. Mat. Sci., 1987, p. 3901.

    Google Scholar 

  63. Mei, Z., M. C. Shine, and J. W. Morris, Jr., submitted to J. Electr. Mat.

    Google Scholar 

  64. Shine, M. C., and L. R. Fox, Low Cycle Fatigue, ASTM STP 942, H.D. Solomon, Ed., American Society for Testing and Materials, Philadelphia, 1988, p. 588.

    Google Scholar 

  65. Solomon, H. D., Braz. and Sold., 11 1986, p. 68.

    Google Scholar 

  66. Hall, P. M., IEEE Trans., CHMT-12, 1987, p. 556.

    Google Scholar 

  67. Enke, N. F., and B. I. Sandor, ASME publication 88-WA/EEP-12, 1988.

    Google Scholar 

  68. Wild, R. N. “Some Properties of Solder and Solder Joints,” IBM Report no. 74z000481, Oct. 1975.

    Google Scholar 

  69. Bangs, E. R., and R. E. Beal, Weld. Res. Supp. Weld. J., 54 1978, p. 377.

    Google Scholar 

  70. Wolverton, W. M., Braz. and Sold., 13 1987, p. 33.

    Google Scholar 

  71. Wolverton, W. M., “Know Your Enemy: How to Stop Solder Joints from Cracking,” Circ. Manuf., Nov. 1972, p. 10.

    Google Scholar 

  72. Frear, D., D. Grivas, M. McCormack, D. Tribula, and J. W. Morris, Jr., Effect of Load and Thermal Histories of Mechanical Behavior TMS, 1987, p. 113.

    Google Scholar 

  73. Summers, T. S. E., and J. W. Morris, Jr., Trans. of the ASME, Journal of Electronic Packaging, 112 (June 1990) pp. 94–99.

    Article  Google Scholar 

  74. Tribula, D., D. Grivas, D. Frear, and J. W. Morris, Jr., J. Elect. Pack., 1989, p. 83.

    Google Scholar 

  75. Chen, F. K. “Applications of the Finite Element Method to the Plastic Deformation Analysis of Perforated Sheet Metals and the Process Simulation of Shape Rolling,” Ph.D. Thesis, University of California, Berkeley, 1989.

    Google Scholar 

  76. McKlintock, F. A., and G. R. Irwin, “Plasticity Aspects of Fracture,” ASTM STP 381 (1965) p. 84 as referenced in Elementary Engineering Mechanics,D. Broek, Ed., Martinus Nijhoff Pub., 1983, p. 99.

    Google Scholar 

  77. Hanson, D., and E. J. Sandford, Trans AIME, 54, 1935, p. 159.

    Google Scholar 

  78. Sully, A. H., Metallic Creep and Creep Resistant Alloys, Butterworths, London, 1949.

    Google Scholar 

  79. Hopkins, L. M. T., and C. W. Thwaites, J. Inst. Met., 54, 1953, p. 181.

    Google Scholar 

  80. Jenkins, C. H., J. Inst. Met., 40, 1921, p. 21.

    Google Scholar 

Download references

Authors

Editor information

John H. Lau

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morris, J.W., Tribula, D., Summers, T.S.E., Grivas, D. (1991). The Role of Microstructure in Thermal Fatigue of Pb-Sn Solder Joints. In: Lau, J.H. (eds) Solder Joint Reliability. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3910-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3910-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6743-7

  • Online ISBN: 978-1-4615-3910-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics