Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 67))

  • 76 Accesses

Abstract

The post transcriptional modification of tRNA whereby a guanine residue in the first position of the anticodon of certain tRNAs is excised and replaced by queuine occurs to a lesser extent in rapidly dividing cells than in quiescent cells. In this report we show that in the sub-lethally irradiated mouse even though the spleen increased seven fold in weight during the post-irradiation period of recovery there was only a slight increase in the (q-) tRNA. In dogs the bone marrow tRNAHis is completely (q-) however, the spleen tRNA is virtually 100% (q+). These results suggest that the presence of queuine has special importance in the metabolism of the spleen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katze, J.R. and Farkas, W.R. A Factor in Serum and Amniotic Fluid is the Substrate for the tRNA Modifying Enzyme Guanine Transferase. Proc. Nat. Acad. Sci. (USA) 76:3271–3275, (1979).

    Article  CAS  Google Scholar 

  2. Okada, N.S., Okada, N., Ohgi, T., Goto, T. and Nishimura, S. Transfer Ribonucleic Acid Guanine Transglycosylase Isolated from Rat Liver. Biochemistry. 19, 395–400, 1980.

    Article  PubMed  Google Scholar 

  3. Okada, N., Okada, N.S., Sato, S., Itoh Y., Oda, K. and Nishimura, S. Detection of Unique tRNA Species in Tumor Tissue by E. coli Guanine Insertion Enzyme. Proc. Nat. Acad. Sci. (USA) 75:4247–4251,1978.

    Article  CAS  Google Scholar 

  4. Jackson, C.D., Irving, C.C. and Sells, B.H. Changes in Rat Liver Transfer RNA Following Growth Hormone Adminstration and Regenerating Liver. Biochim. Biophys. Acta. 217:64–71, (1970).

    Article  PubMed  CAS  Google Scholar 

  5. Landin, R.M., Boisnard, M. and Petrissant, G. Correlation between the presence of tRNAHis and the Erythropoietic Function in Fetal Sheep Liver. Nucl. Acid Res. 7:1635–1648, 1979.

    Article  CAS  Google Scholar 

  6. White, B.N., Tener, G.M., Holden, J. and Suzuki, D.T. Activity of a Transfer RNA Modifying Enzyme during the Development of Drosophila and its Relationship to the Su(s) Locus. J. Mol. Biol. 74:635–641,1973.

    Article  PubMed  CAS  Google Scholar 

  7. Hosbach, H.A. and Kubli, E. Transfer RNA in Aging Drosophila: II Isoacceptor Patterns. Mech. of Ageing and Development. 10:141–149, 1979.

    Article  CAS  Google Scholar 

  8. Owenby, R.K., Stuhlberg, M.P. and Jacobson, K.B. Alternation of the Q Family of Transfer RNAs in Adult Drosophila Melanogaster as a Function of Age, Nutrition and Genotype. Mech. of Ageing and Development. 11:91–103, 1979.

    Article  CAS  Google Scholar 

  9. DuBrul, E.F. and Farkas, W.R. Partial Purification and Properties of the Reticulocyte Guanylating Enzyme. Biochim. Biophys. Acta. 442:379–390, 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Farkas, W.R. Effect of Diet on The Queuine Family of tRNA of Germ-free Mice. J. Biol. Chem. 255:6832–6835, 1980.

    PubMed  CAS  Google Scholar 

  11. Reyniers, J.P., Pleasants, J.R., Wostman, B.S., Katze, J.R. and Farkas, W.R. Administration of Exogenous Queuine is Essential for the Biosynthesis of the Queuosine-containing Transfer RNAs in the Mouse. J. Biol. Chem. 256:11591–11594, 1981.

    PubMed  CAS  Google Scholar 

  12. Howes, N. and Farkas, W.R. Studies on Guanylation of tRNA with a Homogeneous Enzyme from Rabbit Erythrocytes. J. Biol. Chem. 253:9082–9087, 1978.

    PubMed  CAS  Google Scholar 

  13. Misra, H.P. and Fridovich, I. The Role of Superoxide Anion in Autoxidation of Epinephecine and a Simple Assay for Superoxide Dismutase. J. Biol. Chem. 247:3170–3175, 1972.

    PubMed  CAS  Google Scholar 

  14. Matkovics, B., Novak, R., Hanh, H.D., Szabo, L, Varga, S.I. and Zalesna, G. A Comparative Study of Some More Important Experimental Animal Peroxide Metabolism Enzymes. Comp. Biochem. Physiol. 56B: 31–34,1977.

    Google Scholar 

  15. Beers, R.G. and Sizer, I.W. A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem. 195:133–140, 1952.

    PubMed  CAS  Google Scholar 

  16. Chiu, D.T.Y., Stuts, F.H. and Tappel, A.L. Purification and Properties of Rat Lung Soluble Glutathione Peroxidase. Biochim. Biophys. Acta. 445:558–566,1976.

    Article  PubMed  CAS  Google Scholar 

  17. Sedlack, J. and Lindsay, R.H. Estimation of Total Protein-Bound and Nonprotein Sulfhydyl Groups in Tissue with Ellman’s Reagent. Analyt. Biochem. 25:192–205, 1 968.

    Article  Google Scholar 

  18. Patton, S. and Kurtz, G.W. α-Thiobarbituric Acid as a Reagent for Detecting Milk Fat Oxidation. J.Dairy Sci. 34:669–674,1951.

    Article  CAS  Google Scholar 

  19. Placer, Z.A., Cushman, L.L. and Johnson, B.C. Estimation of Product of Lipid Peroxidation (Malonyl Dialdehyde) in Biochemical Systems. Anal. Biochem. 16:359–364, 1966.

    Article  PubMed  CAS  Google Scholar 

  20. Pearson, R.L., Weis, J.F. and Kelmers, A.D. Improved Separation of Transfer RNAs on Polychlorotrifluoroethylene-supported Reversed-Phase Chromatography Columns. Biochim. Biophys. Acta. 228:770–774, 1971.

    Article  PubMed  CAS  Google Scholar 

  21. Szabo, L., Nishimura, S. and Farkas, W.R. Possible Involvement of Queuine in Oxidative Metabolism. Biofactors, 1:241–244, 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farkas, W.R., Szabo, L., Walden, T.L. (1991). The Transfer RNAs of the Irradiated Mouse Spleen Contain Queuine. In: Honn, K.V., Marnett, L.J., Nigam, S., Walden, T.L. (eds) Eicosanoids and Other Bioactive Lipids in Cancer and Radiation Injury. Developments in Oncology, vol 67. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3874-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3874-5_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6727-7

  • Online ISBN: 978-1-4615-3874-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics