Skip to main content

Nonlinear Optical Properties of Thiophene Based Conjugated Polymers

  • Chapter
Book cover Frontiers of Polymer Research

Abstract

Investigation of the nonlinear optical (NLO) properties of organic systems possessing delocalized π electrons has attracted considerable interest because of the large and fast NLO response [1–4]. The most studied systems have been polyacetylene [5–10] and polythiophene [11–14]. Even though the NLO response in these macromolecules derives from the high hyperpolarizability of π delocalized electrons in the carbon polymer backbone, the origin of their large optical nonlinearity is not yet clear and therefore it is not yet possible to take full advantage of the chemical tailoring of new systems in order to make more advanced NLO materials. One way to contribute to an understanding of the origin of the NLO response is to study the electronic cubic susceptibility x (3) as a function of frequency for different conjugated polymers with different electronic structures. In fact in the absence of a spectrum it is difficult to distinguish between the resonant and nonresonant values of x (3) because in principle, resonance may occur not only in spectral regions where the material is absorbing but also in transparent regions by resonance with forbidden electronic states which do not contribute to the absorption. Up to now, only a limited set of data have been available on the electronic x (3) and many of these are limited to a single fundamental frequency. Wavelength dispersed x (3) THG by third harmonic generation (THG) has been studied in polyacetylene [15] and in two thiophene based polyconjugated systems [16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Nonlinear Optical Properties of Polymer”, ed. by A. Heeger, J. Orenstein and D.R. Ulrich, MRS Symp. Proc. Vol. 109, (1988).

    Google Scholar 

  2. “Nonlinear Optical Effects in Organic Polymers”, ed. by J. Messier, F. Kajzar, P. Prasad and D. Ulrich; Kluwer Acad. Publ., Dordrecht (1989).

    Book  Google Scholar 

  3. P.N. Prasad in “Nonlinear Optical effects in Organic Polymers” pag. 377, ed. by J. Messier, F. Kajzar, P. Prasad and D. Ulrich; Kluwer Acad. Publ., Dordrecht (1989).

    Google Scholar 

  4. “Conjugated Polymer Materials: Opportunities in Electronic, Optoelectronics and Molecular Electronics”, ed. by J.L. Bredas and R.R. Chance, NATO ASI Series, Vol. 182, Kluwer Acad. Publ., Dordrecht (1990).

    Book  Google Scholar 

  5. “Organic Molecules for Nonlinear Optics and Photonics”, ed. by J. Messier, F. Kajzar and P. Prasad, NATO ASI Series, Vol. 194, Kluwer Acad. Publ., Dordrecht (1991).

    Google Scholar 

  6. C.V. Shank, R. Yen, R.L. Fork, J. Orenstein and G.L. Baker, Phys. Rev. Lett. 49, 1566 (1982).

    Article  Google Scholar 

  7. C.V. Shank, R. Yen, R.L. Fork, J. Orenstein and G.L. Baker, Phys. Rev. B. 28 6095 (1983).

    Article  CAS  Google Scholar 

  8. L. Rothberg, T.M. Jedju, S. Etemad and G.L. Baker, Phys. Rev. Lett. 57, 3229 (1986).

    Article  CAS  Google Scholar 

  9. L. Rothberg, T.M. Jedju, S. Etemad and G.L. Baker, Phys. Rev. B 36 7524 (1987).

    Article  Google Scholar 

  10. F. Kajzar, S. Etemad, G.L. Baker and J. Messier, Solid State Commun 63, 1113 (1987).

    Article  CAS  Google Scholar 

  11. M. Sinclair, D. Moses, K. Akagi and A.J. Heeger, Phys. Rev. B 38 10724 (1988).

    Article  CAS  Google Scholar 

  12. D.M. Mackie, R.J. Cohen and A.J. Glick, Phys. Rev. B 39 3442 (1989).

    Article  CAS  Google Scholar 

  13. W.S. Fann, S. Benson, J.M.J. Madey, S. Etemad, G.L. Baker and F. Kajzar, Phys. Rev. Lett. 62, 1492 (1989).

    Article  CAS  Google Scholar 

  14. L. Yang, R. Dorsinville, Q.Z. Wang, W.K. Zou, P.P. Ho, N.L. Yang, R.R. Alfano, R. Zamboni, R. Danieli, G. Ruani and C. Taliani, J. Opt. Soc. Am. B 6 753 (1989).

    Article  CAS  Google Scholar 

  15. R. Dorsinville, L. Yang, R.R. Alfano, R. Zamboni and C. Taliani, Opt. Lett. 14, 1321 (1989).

    Article  CAS  Google Scholar 

  16. R. Worland, S.D. Philips, W.C. Walker and A.J. Heeger, Synth. Met. 28, D663 (1989).

    Article  CAS  Google Scholar 

  17. B.P. Singh, M. Samoc, H.S. Nalwa and P.N. Prasad, submitted.

    Google Scholar 

  18. D. Neher, A. Wolf, M. Leclerc, A. Kaltbeitzel, C. Bubeck and G. Wegner, Synth. Met. in press.

    Google Scholar 

  19. W.S. Fann, S. Benson, J.M.J. Madey, S. Etemad, G.L. Baker and F. Kajzar; Phys. Rev. Lett. 62, 1492 (1989).

    Article  CAS  Google Scholar 

  20. S. Etemad, W.S. Fann, P.D. Townsend, G.L. Baker and J. Jackel in. Jackel in “Conjugated Polymer Materials: Opportunities in Electronic, Optoelectronics and Molecular Electronics”, ed. by J.L. Bredas and R.R. Chance, NATO Series, Vol. 182, Kluwer Acad. Publ., Dordrecht 341–352, (1990).

    Chapter  Google Scholar 

  21. F. Kajzar, G. Ruani, C. Taliani and R. Zamboni, Synth. Met. 37, 223 (1990).

    Article  CAS  Google Scholar 

  22. W.P. Su and J.R. Shrieffer, Proc. Natl. Acad. USA 77, 5626 (1980).

    Article  CAS  Google Scholar 

  23. R. Ball, W.P. Su and J.R. Shrieffer, J. Phys. (Paris) Colloq 44, c3 (1983).

    Google Scholar 

  24. P. Di Marco, M. Mastragostino and C. Taliani, Mol. Cryst. Liq. Cryst. 118, 241 (1985).

    Article  Google Scholar 

  25. R. Danieli, C. Taliani, R. Zamboni, G. Giro, M. Biserni, M. Mastragostino and A. Testoni, Synth. Met. 13, 325 (1986).

    Article  CAS  Google Scholar 

  26. M.A. Druy and R.J. Seymour, 44, C3–595 (1983).

    Google Scholar 

  27. M. Pope and C.E. Swenberg, “Electronic Processes in Organic Crystals” Clarendom, Oxford (1982) (and reference therein).

    Google Scholar 

  28. J.M. Andrè, L.A. Burke, J. Delhalle, G. Nicolas and P. Durand, Int. J. Quantum Chem. S13, 283 (1979).

    Google Scholar 

  29. J.L. Bredas, R.R. Chance, R. Silbey, G. Nicolas and Ph. Durand, J. Chem. Phys. 75, 255 (1981).

    Article  CAS  Google Scholar 

  30. C. Taliani, R. Zamboni, R. Danieli, P. Ostoja, W. Porzio, R. Lazzaroni and J.L. Bredas, Physica Scripta 40, 781 (1989).

    Article  CAS  Google Scholar 

  31. G.M. Carter, M.K. Thakur, Y.J. Chen and J.V. Hryniewicz, Appl. Phys. Lett. 47, 457 (1985).

    Article  CAS  Google Scholar 

  32. S.L. Shapiro and H.P. Broida, Phys. Rev. 154, 129 (1967).

    Article  CAS  Google Scholar 

  33. D. Bariswyl and K. Maki, Synth. Met. 28 D507 (1989).

    Article  Google Scholar 

  34. Y.N. Gartstein and A.A. Zakidov, Sol. St. Commun. 213 (1987).

    Google Scholar 

  35. F. Moraes, H. Schaffer, M. Kobayashi, A.J. Heeger and F. Wudl, Phys. Rev. B. Rap. Comm. 30, 2948 (1984).

    CAS  Google Scholar 

  36. Z. Vardeny, E. Ehrenfreund, O. Brafman, A. Heeger and F. Wudl, Synth. Met. 18, 183 (1987).

    Article  CAS  Google Scholar 

  37. a) Z. Vardeny, E. Ehrenfreund, O. Brafman, A. Heeger and F. Wudl, Synth. Met. 18, 183 (1987).

    Article  CAS  Google Scholar 

  38. C. Taliani, R. Danieli, R. Zamboni, P. Ostoja and W. Porzio, Synth. Met. 18, 177 (1987).

    Article  CAS  Google Scholar 

  39. A.J. Pal, G. Ruani, R. Zamboni, R. Danieli and C. Taliani, Synth. Met. 41, 579 (1991).

    Article  CAS  Google Scholar 

  40. A.J. Heeger, S. Kivelson, J.R. Shrieffer and W.P. Su, Rev. Mod. Phys. 60, 781 (1988).

    Article  CAS  Google Scholar 

  41. Y.R. Shen, “The Principle of Nonlinear Optics”, John Wiley & Sons, Inc. 1984, Chap. 14.

    Google Scholar 

  42. C. Taliani, R. Zamboni, G. Ruani, S. Rossini and R. Lazzaroni, J. Mol. Elctr. 6, 225 (1990).

    CAS  Google Scholar 

  43. M.T. Zhao, B.P. Singh and P.N. Prasad, J. Chem. Phys. 89, 5535 (1988).

    Article  CAS  Google Scholar 

  44. D. Fichou, F. Gamier, F. Charra, F. Kajzar and J. Messier, Spec. Publ. Royal Soc. Chem. 69, 176 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taliani, C., Ruani, G., Zamboni, R., Yang, L., Dorsinville, R., Alfano, R.R. (1991). Nonlinear Optical Properties of Thiophene Based Conjugated Polymers. In: Prasad, P.N., Nigam, J.K. (eds) Frontiers of Polymer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3856-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3856-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6721-5

  • Online ISBN: 978-1-4615-3856-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics