Skip to main content

Control of Fusion of Biological Membranes by Phospholipid Asymmetry

  • Chapter

Abstract

Membrane fusion is one of the most fascinating properties of cellular membranes important for the homeostasis of the cell (organism). Cell-division, sperm-egg fusion and polykaryon formation in muscle and bone are typical examples of intercellular fusion reactions. Those natural cell-cell fusion processes lead to significant physiological and developmental changes. Intracellular fusion events are involved in endocytosis, exocytosis, intracellular transport and targeting. Viral infection and parasite invasion are other meaningful biological phenomenons depending on membrane fusion processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, K., Herrmann, A., Gawrisch, K., and Pratsch, L., 1988, Water-mediated effects of PEG on membrane properties and fusion, in: “Molecular mechanisms of membrane fusion”, S. Ohki, D. Doyle, T.D. Flanagan, S.W. Hui, E. Mayhew, eds., Plenum Press, N.Y. and London.

    Google Scholar 

  • Baldwin, J.M., O’Reilly, R., Whitney, M., and Lucy, J.A., 1990, Surface exposure of phosphatidylserine is associated with the swelling and osmotically-induced fusion of human erythrocytes in the presence of Ca2+, Biochim. Biophys. Acta 1028: 14.

    PubMed  CAS  Google Scholar 

  • Bashford, C.L., 1988, Phospholipid flip-flop correlates with virus-membrane fusion rather with pore formation, studia biophysica 127: 155.

    CAS  Google Scholar 

  • Ben-Bassat, I., Bensch, R.G., and Schrier, S.L., 1972, Drug induced ery-throcyte membrane internalization, J. Clin. Invest. 51: 1833.

    PubMed  CAS  Google Scholar 

  • Bishop, W.P., and Bell, R.M., 1985, Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter, Cell 42: 51.

    PubMed  CAS  Google Scholar 

  • Bitbol, M., Fellmann, P., Zachowski, A., and Devaux, P.F., 1987, Ion regulation of phosphatidylserine and phosphatidylethanolamine outside-inside translocation in human erythrocytes, Biochim. Biophys. Acta 904: 268.

    PubMed  CAS  Google Scholar 

  • Bitbol, M., and Devaux, 1988, Measurement of outward translocation of phospholipids across human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 85: 6783.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R., 1987, Membrane Fusion, Curr. Top. Membr. Transp. 29: 203.

    CAS  Google Scholar 

  • Blumenthal, R., 1988, Cooperativity in Viral Fusion, Cell Biophysics 12: 1.

    PubMed  CAS  Google Scholar 

  • Boland, R., Chyn, T., Roufa, Reyes, E., and Martonosi, A., 1977, The lipid composition of muscle cells during development, Biochim. Biophys. Acta 489: 349.

    PubMed  CAS  Google Scholar 

  • Brenner, R.B., 1984, Effect of unsaturated acids on membrane structure and enzyme kinetics, Prog. Lip. Res. 23: 69.

    CAS  Google Scholar 

  • Buckland, R.M., Radda, G.K., and Shennan, C.D., 1978, Accessibility of phospholipids in the chromaffine granule membrane, Biochem. Biophys. Acta 513: 321.

    PubMed  CAS  Google Scholar 

  • Calvez, J.Y., Zachowski, A., Herrmann, A., Morrot, G., and Devaux, P.F., 1988, Asymmetric distribution of phospholipids in spectrin-poor erythrocyte-vesicles, Biochemistry 27: 5666.

    PubMed  CAS  Google Scholar 

  • Chejanovsky, N., Amselem, S., Zakai, N., Bahrenholz, Y., and Loyter, A., 1986, Membrane vesicles containing the Sendai virus binding glycoprotein, but not the viral fusion protein, fuse with phosphatidylserine liposomes at low pH, Biochemistry 25: 4810.

    PubMed  CAS  Google Scholar 

  • Chejanovsky, N., Nussbaum, O., Loyter, A., and Blumenthal, R., 1988, Fusion of enveloped viruses with biological membranes. Fluorescence dequenching studies, Subcellular Biochemistry 13: 415.

    PubMed  CAS  Google Scholar 

  • Chernomordik, L.V., Melikyan, G.B., and Chizmadzhev, Y.A., 1987, Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers, Biochim. Biophys. Acta 906: 309.

    PubMed  CAS  Google Scholar 

  • Citovsky, V., Blumenthal, R., and Loyter, A., 1985, Fusion of Sendai virions with phosphatidylcholine-cholesterol liposomes reflects the viral activity required for fusion with biological membranes, FEBS Lett. 193: 135.

    PubMed  CAS  Google Scholar 

  • Coorssen, J., and Rand, R.P., 1988, Competitive forces between lipid membranes, studia biophysica 127: 53.

    CAS  Google Scholar 

  • Cribier, S., Morrot, G., Neumann, J.-M., and Devaux, P.F., 1990, Lateral diffusion of erythrocyte phospholipids in model membranes comparison between inner and outer leaflet, Eur. Biophys. J. 18: 33.

    PubMed  CAS  Google Scholar 

  • De Kruijff, B., van Zoelen, E.J.J., and van Deenen, L.L.M., 1978, Glycophorin facilitates the transbilayer movement of phosphatidylcholine in vesicles, Biochim. Biophys. Acta 509: 537.

    PubMed  Google Scholar 

  • Deutsch, J.W., and Kelly, R.B., 1981, Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion, Biochemistry 20: 378.

    PubMed  CAS  Google Scholar 

  • Devaux, P.F., Morrot, G., Herrmann, A., and Zachowski, A., 1988, Protein involvement in plasma membrane lipid asymmetry, studia biophysica 1–3:183

    Google Scholar 

  • Devaux, P.F., 1990, The aminophospholipid translocase. A transmembrane lipid pump - Physiological significance, News Physiol. Sci. 5: 53.

    CAS  Google Scholar 

  • Dimitrov, D.S., and Sowers, A.E., 1990, A delay in membrane fusion: Lag times observed by fluorescence microscopy of individual fusion events induced by an electric field pulse, Biochemistry.

    Google Scholar 

  • Dressler, V., Schwister, K., Haest, C.W.M., and Deuticke, B., 1983, Dielectric breakdown of the erythrocyte membrane enhances transbilayer mobility of phospholipids, Biochim. Biophys. Acta 732: 304.

    PubMed  CAS  Google Scholar 

  • Düzgünes, N., Nir, S., Wilschut, J., Betntz, Newton, C., Portis, A., and Papahadjopoulos, D., 1981, Calcium-and magnesium-induced fusion of mixed phosphatidylserine/phosphatidylcholine vesicles: Effect of ion binding, J. Membr. Biol. 59: 115.

    PubMed  Google Scholar 

  • Düzgünes, N, 1985, Membrane fusion, Subcell. Biochem. 11: 195.

    Google Scholar 

  • Ellens, H., Siegel, D.P., Alford, D., Yeagle, P.L., Boni, L., Lis, L.J., Qinn, P.J., and Bentz, J., 1989, Membrane fusion and inverted phases. Biochemistry 28:3692.

    PubMed  CAS  Google Scholar 

  • Evans, E., and Needham, D., 1988, Intrinsic colloidal attraction/repulsion between lipid bilayers and strong attraction induced by non-adsorbing polymers, in: “Molecular mechanisms of membrane fusion”, S. Ohki, D. Doyle, T.D. Flanagan, S.W. Hui, E. Mayhew, eds., Plenum Press, N.Y. and London.

    Google Scholar 

  • Grimaldi, S., Verna, R., Puri, A., Morris, S.J., and Blumenthal, R., 1988, Fusion of vesicular stomatitis virus with human red blood cell membranes: The role of phospholipid distribution, in: “Advances in Biotechnology of Membrane Ion Transport”, P.L. Jorgensen and R. Verna, eds., Serono Symposia Publications from Raven Press 51, New York.

    Google Scholar 

  • Hanahan, D.J., and Nelson, D.R., 1984, Phospholipids as dynamic participants in biological processes. J. Lipid Res. 25: 1528.

    PubMed  CAS  Google Scholar 

  • Haywood, A.M., and Boyer, B.P., 1984, Effect of lipid composition upon fusion of liposomes with Sendai virus membranes, Biochemistry 23: 4061.

    Google Scholar 

  • Henseleit, U., Plasa, G., and Haest, C., 1990, Effects of divalent cations on lipid flip-flop in the human erythrocyte membrane, Biochim. Biophys. Acta 1029: 127.

    PubMed  CAS  Google Scholar 

  • Herbette, L., Blaisie J.K., Defoor, P., Fleischer, S., Bick, R.J., van Winkle, W.B., Tate, C.A., and Entman, M.L., 1984, Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane, Archs. Biochem. Biophys. 234: 235.

    CAS  Google Scholar 

  • Herman, B.A., and Fernandez, S.M., 1978, Changes in membrane dynamics associated with myogenic cell fusion, J. Cell. Physiol. 94: 253.

    PubMed  CAS  Google Scholar 

  • Herman, B.A., and Fernandez, S.M., 1982, Dynamics and topographical distribution of surface glycoproteins during myoblast fusion. A resonance energy transfer study, Biochemistry 21: 3275.

    PubMed  CAS  Google Scholar 

  • Herrmann, A., and Müller, P., 1986, A model for the asymmetric lipid distribution in the human erythrocyte membrane, Bioscience Rep. 6: 185.

    CAS  Google Scholar 

  • Herrmann, A., Zachowski, A., and Devaux, P.F., 1990a, Translocation and distribution of phospholipids across eukaryotic plasma membranes, in: “Biophysics of Cell Surface”, Springer Series in Biophysics, R. Glaser and D. Gingell, eds, Springer-Verlag Berlin.

    Google Scholar 

  • Herrmann, A., Zachowski, A., and Devaux, P.F., 1990b, The protein-mediated phospholipid translocation of endoplasmic reticulum has a low specifity, Biochemistry 29: 2023.

    CAS  Google Scholar 

  • Herrmann, A., Clague, M.J., Puri, A., Morris, S.J., Blumenthal, R., and Grimaldi, S., 1990c, Effect of erythrocyte transbilayer phospholipid distribution on fusion with vesicular stomatitis virus, Biochemistry 29: 4054.

    CAS  Google Scholar 

  • Herrmann, A., and Devaux, P.F., 1990, Alteration of the aminophospholipid translocase activity during in vivo and artificial aging of human erythrocytes, Biochim. Biophvs. Acta 1027: 41.

    CAS  Google Scholar 

  • Herrmann, A., Clague, M., and Blumenthal, R., 1991, The role of target membrane structure in fusion with influenza virus: effect of modulating erythrocyte transbilayer phospholipid distribution and cytoskeleton, in preparation.

    Google Scholar 

  • Hoekstra, D., 1983, Topographical distribution if a membrane-inserted fluorescent phospholipid analogue during cell fusion, Exp. Cell. Res. 144: 482.

    PubMed  CAS  Google Scholar 

  • Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J., 1984, Fluorescence method for measuring the kinetics between biological membranes, Biochemistry 23: 5675.

    PubMed  CAS  Google Scholar 

  • Homan, R., and Pownall, H.J., 1987, Effect of pressure on phospholipid translocation, J. Am. Chem. Soc. 109: 4759.

    CAS  Google Scholar 

  • Hong, K., Düzgünes, N., and Papahadjopoulos, D., 1982, Modulation of membrane fusion by calcium-binding proteins, Biophys. J. 37: 297.

    PubMed  CAS  Google Scholar 

  • Huang, S.K., and Hui, S.W., 1990, Fluorescence mesurements of fusion between human erythrocytes induced by poly(ethylene glycol), Biophys. J. 58: 1109.

    PubMed  CAS  Google Scholar 

  • Hui, S.W., Isac, T., Boni, L.T., and Sen, A., 1985, Action of polyethylene glycol on the fusion of human erythrocyte membranes, J. Membr. Biol. 84: 137.

    PubMed  CAS  Google Scholar 

  • Hullin, F., Bossant, M.-J., and Salem jr., N., 1991, Aminophospholipid molecular species asymmetry in the human erythrocyte plasma membrane, Biochim. Biophys. Acta 1061: 15.

    PubMed  CAS  Google Scholar 

  • Isrealeachvili, J.N., Marcelja, S., and Horn, R.G., 1980, Physical principles of membrane organization, Quart. Rev. Biophys. 13: 121.

    Google Scholar 

  • Kent, C., Schimmel, S.D., and Vagelos, P.R., 1974, Lipid composition of plasma membranes from developing chick muscle cells in culture, Biochim. Biophys. Acta 360: 312.

    PubMed  CAS  Google Scholar 

  • Kielian, M., and White, J. 1984, Role of cholesterol in fusion of Semliki forest virus with membranes, J. Virol. 52: 281.

    PubMed  CAS  Google Scholar 

  • Klappe, K., Wilschut, J., Nir, S., and Hoekstra, D., 1986, Parameters effecting fusion between Sendai virus and liposomes. Role of virus proteins, liposome composition and pH, Biochemistry 25: 8252.

    PubMed  CAS  Google Scholar 

  • Knutton, S., 1979, Studies of membrane fusion: III. Fusion of erythrocytes with PEG, J. Cell Sci. 36: 61.

    PubMed  CAS  Google Scholar 

  • Lis, L.J., McAlister, M., Fuller, N., Rand, R.P., and Parsegian, V.A., 1982, Interactions between neutral phospholipid membranes, Biophys. J. 37: 657.

    PubMed  CAS  Google Scholar 

  • Maeda, T., Kawasaki, K., and Ohnishi, S.I., 1981, Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus induced hemolysis and fusion at pH 5.2, Proc. Natl. Acad. Sci. USA if 4133.

    Google Scholar 

  • Maksymiw, R., Sui, S., Gaub, H., and Sackmann, E., 1987, Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae, Biochemistry 26: 2983.

    PubMed  CAS  Google Scholar 

  • Mastromarino, P., Conti, C., Goldoni, P., Hauttecoeur, B., and Orsi, N, 1988, Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH, J. Gen. Virol. 68: 2359.

    Google Scholar 

  • McEvoy, L., Willimason, P., and Schlegel, R.A., 1986, Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages, Proc. Natl. Acad. Sci. USA 83: 3311.

    PubMed  CAS  Google Scholar 

  • Michaelson, D.M., Barkai, G., Barenholz, Y., 1983, Asymmetry of lipid organization in cholinergic synaptic vesicle membranes, Biochem. J. 211: 155.

    PubMed  CAS  Google Scholar 

  • Middelkoop, E., 1989, Transmembrane phospholipid asymmetry in erythroid cells: mechanisms of maintenance, Ph.D. thesis, University of Utrecht (The Netherlands).

    Google Scholar 

  • Morrot, G., Hervé, P., Zachowski, A., Fellmann, P., and Devaux, P.F., 1989, Aminophospholipid translocase of human erythrocytes: phospholipid substrate specifity and effect of cholesterol, Biochemistry 28: 3456.

    PubMed  CAS  Google Scholar 

  • Morrot, G., Zachowski, A., and Devaux, P.F., 1990, PArtial purification and characterization of the human erythrocyte M-ATPase. A candidate aminophospholipid translocase, FEBS lett. 266: 29.

    PubMed  CAS  Google Scholar 

  • Newton, A.C., and Koshland jr., D.E., 1990, Phosphatidylserine affects specifity of protein kinase C substrate phosphorylation and autophosphorylation, Biochemistry 29: 6656.

    PubMed  CAS  Google Scholar 

  • Nir, S., Klappe, K., and Hoekstra, D., 1986, Mass action analysis of kinetics and extent of fusion between Sendai virus and phospholipid vesicles, Biochemistry 25: 8261.

    PubMed  CAS  Google Scholar 

  • Ohki, S., 1982, A mechanism of divalent ion-induced phosphatidylserine membrane fusion, Biochim. Biophys. Acta 689: 1.

    PubMed  CAS  Google Scholar 

  • Ohki, S., 1984, Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion, J. Membr. Biol. 77: 265.

    PubMed  CAS  Google Scholar 

  • Ohki, S., 1988, Surface tension, hydration energy and membrane fusion, in: “Molecular mechanisms of membrane fusion”, S. Ohki, D. Doyle, T.D. Flanagan, S.W. Hui, and E. Mayhew, eds., Plenum Press, N.Y. and London.

    Google Scholar 

  • Ohshima, H., and Ohki, S., 1985, Effects of divalent cations on the surface tension of a lipid monolayer-coated air/water interface, J. Colloid Interface Sci. 102: 85.

    Google Scholar 

  • Op den Kamp, J.A.F. 1979, Lipid asymmetry in membranes, A. Rev. Biochem. 48: 47.

    CAS  Google Scholar 

  • Quinn, P.J., Joo, F., and Vigh, L., 1989, The role of unsaturated lipids in structure and function, PSrog. Biophys. Molec. Biol. 53: 71.

    CAS  Google Scholar 

  • Papahadjopoulos, D., Meers, P.R., Hong, K., Ernst, J.D., Goldstein, I.M. and Düzgünes, N., 1988, Calicum-induced membrane fusion: From liposomes to cellular membranes, in: “Molecular mechanisms of membrane fusion”, S. Ohki, D. Doyle, T.D. Flanagan, S.W. Hui, E. Mayhew, eds., Plenum Press, N.Y. and London.

    Google Scholar 

  • Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R., and Südhof, T.C., 1990, Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C, Nature 345: 1990.

    Google Scholar 

  • Pollard, H.B., Rojas, E., Burns, L., and Parra, C., 1988, Synexin, calcium and the hydrophobic bridge hypothesisfor membrane fusion, in: “Molecular mechanisms of membrane fusion”, S. Ohki, D. Doyle, T.D. Flanagan, S.W. Hui, E. Mayhew, eds., Plenum Press, N.Y. and London.

    Google Scholar 

  • Poste, G., and Pasternak, C.A., 1978, Virus-induced cell fusion, in:“Membrane fusion (G. Poste and G.L. Nicholson, SElsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Pratsch, L., and Donath, E., 1988, Poly-ethylene glycol depletion layers on human red blood cell surfaces measured by electrophoresis, studia biophysica 123: 101.

    CAS  Google Scholar 

  • Prives, J., and Shinitzky, M., 1977, Increased membrane fluidity precedes fusion of muscle cells, Nature (London) 268: 761.

    CAS  Google Scholar 

  • Puri, A., Winick, J., Lowy, J., Covell, D., Eidelman, O., Walter, A., and Blumenthal, R, 1988, Activation of vesicular stomatitis virus with cell by pretreatment at low pH, J. Biol. Chem. 263: 4749.

    PubMed  CAS  Google Scholar 

  • Rand, R.P., and Parsegian, V.A., 1989, Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta 988: 351.

    CAS  Google Scholar 

  • Rando, R.R., 1988, Regulation of protein kinase C activity by lipids, FASEB J. 2:2348.

    PubMed  CAS  Google Scholar 

  • Reporter, M., and Norris, G., 1973, Reversible effects of lysolecithin of fusion of cultured rat muscle cells, Differentiation 1: 83.

    CAS  Google Scholar 

  • Ross, D.S., and Choppin, P.W., 1985, Biochemical studies on cell fusion. II. Control of fusion response by lipid alteration, J. Cell Biol. 101: 1591.

    Google Scholar 

  • Sauro, V.S., Brown, G.A., Hamilton, M.R., Strickland, C.K., and Strickland, K.P., 1988, Changes in phospholipid metabolism dependent on calcium-regulated myoblast fusion, Biochem. Cell Biol. 66: 1110.

    PubMed  CAS  Google Scholar 

  • Schlegel, R., Tralka, T.S., Willingham, M.C., and Pastan, I., 1983, Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site?, Cell 32: 639.

    PubMed  CAS  Google Scholar 

  • Schudt, C., Dahl, G., and Gratzl, M., 1976, Calcium-induced fusion of plasma membranes isolated from myoblasts grown in culture, Cytobiology 13: 211.

    CAS  Google Scholar 

  • Schudt, C., and Pette, D, 1976, influence of monosaccharides, medium factors and enzymatic modification on fusion of myoblasts in vitro, Cytobiologie 13: 74.

    CAS  Google Scholar 

  • Scott, J.H., Creutz, C.E., and Pollard, H.B., 1985, Synexin binds in a calcium-dependent fashion to oriented chromaffin cell plasma membranes, FEBS lett. 180: 17.

    PubMed  CAS  Google Scholar 

  • Seddon, J.M., 1990, Structure of the inverted hexagonal (HO phase, and non-lamellar phase transitions of lipids, Biochim. Biophys. Acta 1031: 1.

    PubMed  CAS  Google Scholar 

  • Seigneuret, M., and Devaux, P.F., 1984, ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes, Proc. Natl. Acad. Sci. USA 81: 3751.

    PubMed  CAS  Google Scholar 

  • Seigneuret, M., Zachowski, A., Herrmann, A., and Devaux, P.F., 1984, Asymmetric lipid fluidity in human erythrocyte membrane: New spin-label evidence, Biochemistry 23: 4271.

    PubMed  CAS  Google Scholar 

  • Session, A., and Horwitz, A.F., 1981, Myoblast aminophospholipid asymmetry differs from that of fibroblasts, FEBS lett. 134: 75.

    Google Scholar 

  • Session, A., and Horwitz, A.F., 1983, Differentiation-related differences in the plasma membrane phospholipid asymmetry of myogenic and fibrogenic cell, Biochim. Biophys. Acta 728: 103.

    Google Scholar 

  • Stegmann, T., Hoekstra, D., Scherphof, G., and Wilschut, J, 1986, Fusion activity of influenza virus, J. Biol. Chem. 261: 10966.

    PubMed  CAS  Google Scholar 

  • Stegmann, T., Doms, R., and Helenius, A., 1989, Protein-mediated membrane fusion, Annu. Rev. Biophys. Biophys. Chem. 18: 187.

    PubMed  CAS  Google Scholar 

  • Stubbs, C. D., and Smith, A., D., 1984, The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function, Biochim. Biophys. Acta 779: 89.

    PubMed  CAS  Google Scholar 

  • Sune, A., Vidal, M., Morin, P., Saint-Marie, J., and Bienvenue, A., 1988, Evidence for bidirectional transverse diffusion of spin-labeled phospholipids in the plasma membrane of guinea pig blood cells, Biochim. Biophys. Acta 946: 315.

    PubMed  CAS  Google Scholar 

  • Tanaka, K.I., and Ohnishi, S.-I., 1976, Heterogeneity in the fluidity of intact erythrocyte membrane and its homogenization upon hemolysis, Biochim. Biophys. Acta 426: 218.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., and Schroit, A.J., 1983, Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages, J. Biol. Chem. 258: 11335.

    PubMed  CAS  Google Scholar 

  • Tullius, E.K., Williamson, P., and Schlegel, R.A., 1989, Effect of transbilayer phospholipid distribution on erythrocyte fusion, Bioscience Rep. 9: 623.

    CAS  Google Scholar 

  • Van der Bosch, J., Schudt, C., and Pette, D., 1973, Influence of temperature, cholesterol, dipalmitoylecithin and Cat+ on the rate of muscle cell fusion, Exp. Cell Res. 82: 433.

    PubMed  Google Scholar 

  • Van Meer, G., Davoust, J., and Simon, K., 1985, Parameters affecting low-pH mediated fusion of liposomes with the plasma membrane of cells infected with influenza virus, Biochemistry 24: 3599.

    Google Scholar 

  • Van Oss, C.J., and Gilman, C.F., 1972, Phagocytosis as a surface phenomenon. I. Contact angles and phagocytosis of non-opsonized bacteria, J. Reticuloendothel. Soc. 3: 29.

    Google Scholar 

  • Van Oss, C.J., 1986, Phagocytosis: An overview, Meth. Enzymol. 132: 3.

    PubMed  Google Scholar 

  • Verhoeven, B.M., Schlegel, R.A., and Williamson, P., 1990, Lipid asymmetry is rapidly lost and regained, 10th. Internat.Biophys.Congress 29.7.90–3.8.90, Vancouver, Abstract P.4.6.26, p. 353.

    Google Scholar 

  • Verkleij, A.J., Leunissen-Bijvelt, J., de Kruijff, B., Hope, M., and Cullis, P.R., 1984,Non-bilayer structures in membrane fusion, in: Cell fusion, Ciba foundation Sympsoium 103: 45.

    CAS  Google Scholar 

  • Wakelam, M.J.O., 1983, Inositol phospholipid metabolism and myoblast fusion, Biochem. J. 214: 77.

    PubMed  CAS  Google Scholar 

  • Wakelam, M.J.O., 1988, Myoblast fusion - A mechanistic analysis, Curr. Top. Membr. Transp. 32: 87.

    Google Scholar 

  • Westhead, E.W., 1987, Lipid composition and orientation in secretory vesicles, Ann. N.Y. Acad. Sci. 493: 92.

    PubMed  CAS  Google Scholar 

  • White, J.M., Helenius, A., and Kartenbeck, J., 1982, Membrane fusion activity of influenza virus, EMBO J. 1: 217.

    PubMed  CAS  Google Scholar 

  • White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys., 16:151.

    PubMed  CAS  Google Scholar 

  • White J M., and Blobel, C.P., 1989, Cell-to-cell fusion, Curr. Ovin. Cell Biol. 1: 934.

    CAS  Google Scholar 

  • White, J., 1990, Viral and cellular membrane fusion, Annu. Rev. Physiol. 52: 675.

    CAS  Google Scholar 

  • Wilschut, J., Düzgünes, N., Hoekstra, D., Papahadjopoulos, D., 1984, Modulation of membrane fusion by membrane fluidity. Temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles, Biochemistry 24: 8.

    Google Scholar 

  • Wilschut, J., Hoekstra, D., 1986, Membrane fusion in lipid vesicles as a model system, Chem. Phys. Lip. 40:145.

    CAS  Google Scholar 

  • Wilschut, J., 1989, Intracellular membrane fusion, Curr. Ovin. Cell Biol., 1:639.

    CAS  Google Scholar 

  • Williamson, P., Algarin, L., Bateman, J., Choe, H.R., and Schlegel, R.A., 1985, Phospholipid asymmetry in human erythrocyte ghosts, J. Cell. Physiol. 123: 209.

    PubMed  CAS  Google Scholar 

  • Yamada, S., and Ohnishi, S., 1986, Vesicular stomatitis virus binds and fuses with phospholipid domain in target cell membranes, Biochemistry 25: 3703.

    PubMed  CAS  Google Scholar 

  • Yeagle, P.L., 1989, Lipid regulation of cell membrane structure and function, FASEB J. 3: 1833.

    PubMed  CAS  Google Scholar 

  • Zachowski, A., Fellmann, P., and Devaux, P.F., 1985, Absence of transbilayer diffusion of spin-labeled sphingomyelin in human erythrocytes. Comparison with the diffusion of several spin-labeled glycerophospholipids, Biochim. Biophys. Acta 815: 510.

    PubMed  CAS  Google Scholar 

  • Zachowski, A., Henry, J.P., and Devaux, P.F., 1989, Control of transmembrane lipid asymmetry in chromaffine granules by an ATP-dependent protein, Nature 340: 75.

    PubMed  CAS  Google Scholar 

  • Zachowski, A., and Devaux, P.F., 1990, Transmembrane movements of lipids, Experientia 46: 645.

    Google Scholar 

  • Zwaal, R.F.A., 1988, Scrambling membrane phospholipids and focal control of blood clotting, News Physiol. Sci. 3: 57.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Herrmann, A., Zachowski, A., Devaux, P.F., Blumenthal, R. (1991). Control of Fusion of Biological Membranes by Phospholipid Asymmetry. In: Ohki, S. (eds) Cell and Model Membrane Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3854-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3854-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6720-8

  • Online ISBN: 978-1-4615-3854-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics