Skip to main content

Short-Range Repulsive Interactions between the Surfaces of Lipid Membranes

  • Chapter

Abstract

Short-range repulsive interactions are critical to many properties of both cell and model membranes. For example, the close approach of apposing membrane surfaces is governed by short-range interactions. Therefore, for cell membranes, both the magnitude and range of these short-range forces are important in the numerous biological processes where membranes come together, such as cell-cell recognition, synaptic transmission, and protein secretion. Moreover, specificity in biochemical associations can be achieved through a balance of short-range attractive and repulsive interactions. For model membranes, interbilayer interactions determine to a large extent the hydration, aggregation, and fusogenic properties of lipid bilayers and lipid-protein assemblies. In this paper we discuss our recent work on the two principal short-range repulsive interactions acting between cell and model membranes, namely the hydration and steric pressures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attard, P. and Batchelor, M. T., 1988, A mechanism for the hydration force demonstrated in a model system, Chem. Phys. Letts. 149: 206–211.

    Article  CAS  Google Scholar 

  • Belaya, M. L., Feigel’man, M. V. and Levadny, V. G., 1986, Hydration forces as a result of non-local water polarizability, Chem. Phys. Letts. 126: 361–364.

    Article  CAS  Google Scholar 

  • Blaurock, A. E. and Worthington, C. R., 1966, Treatment of low angle X-ray data from planar and concentric multilayered structures, Biophys. J. 9: 305–312.

    Article  Google Scholar 

  • Cevc, G. and Marsh, D., 1985, Hydration of noncharged lipid bilayer membranes. Theory and experiments with phosphatidylethanolamine, Biophys. J. 47: 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Cevc, G. and Marsh, D., 1987, “Phospholipid Bilayers. Physical Principles and Models”, John Wiley & Sons, New York.

    Google Scholar 

  • Dzhavakhidze, P. G., Kornyshev, A. A. and Levadny, V. G., 1986, The role of the interface in the nonlocal electrostatic theory of hydration force, Phys. Letts. A 118: 203–208.

    Article  CAS  Google Scholar 

  • Dzhavakhidze, P. G., Kornyshev, A. A. and Levadny, V. G.,1988, The structure of the interface in the solvent-mediated interaction of dipolar surfaces, Il Nuovo Cimento 10D: 627–654.

    Article  Google Scholar 

  • Graham, I. S., Georgallas, A. and Zuckermann, M. J. 1986, Forces between charged lipid bilayers: a theoretical model, J. Chem. Phys. 85: 6010–6021.

    Article  CAS  Google Scholar 

  • Gruen, D. W. R. and Marcelja, S., 1983, Spatially varying polarization in water, J. Chem. Soc. Faraday Trans. 2 79: 225–242.

    Google Scholar 

  • Hauser, H., 1981, The polar group conformation of 1,2-dialkyl phosphatidylcholines, an NMR study, Biochim. Biophys. Acta 646: 203–210.

    Article  CAS  Google Scholar 

  • Hauser, H., Pascher, I., Pearson, R. H. and Sundell, S., 1981, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 650: 21–51.

    Article  PubMed  CAS  Google Scholar 

  • Helm, C. A., Israelachvili, J. N., and McGuiggan, P. M., 1989, Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers, Science 246: 919–922.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, D. and Lozada-Cassou, M., 1986, A simple theory for the force between spheres immersed in a fluid, J. Colloid Interface Sci. 114: 180–183.

    Article  CAS  Google Scholar 

  • Herbette, L., Marquardt, J., Scarpa, A. and Blasie, J. K. 1977, A direct analysis of lamellar x-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum, Biophys. J. 20: 245–272.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, P. B., Mason, R., Thomas, K. M. and Shipley, G. G., 1974, Structural chemistry of 1,2 dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids, Proc. Nat. Acad. USA 71: 3036–3040.

    Article  CAS  Google Scholar 

  • Howell, J. I. and Lucy, J. A., 1969, Cell fusion induced by lysolecithin, FEBS Lett. 4: 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili, J. N., 1985, “Intermolecular and Surface Forces”, Academic Press, Inc., London.

    Google Scholar 

  • Israelachvili, J. N. and Wennerstrom, H., 1990, Hydration or steric forces between amphiphilic surfaces?, Langmuir 6: 873–876.

    Article  CAS  Google Scholar 

  • Jendrasiak, G. L. and Hasty, J. H., 1974, The hydration of phospholipids, Biochim. Biophys. Acta 337: 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, B. and Wennerstrom, H., 1983, Image-force forces in phospholipid bilayer systems, J. Chem. Soc. Faraday Trans. 2 79: 19–35.

    Google Scholar 

  • Kornyshev, A. A. and Leikin, S., 1989, Fluctuation theory of hydration forces: The dramatic effects of inhomogeneous boundary conditions, Phys. Rev. A 40: 6431–6437.

    Article  PubMed  CAS  Google Scholar 

  • Lecuyer, H. and Dervichian, D. G., 1969, Structure of aqueous mixtures of lecithin and cholesterol, J. Mol. Biol. 45: 39–57.

    Article  PubMed  CAS  Google Scholar 

  • LeNeveu, D. M., Rand, R. P. and Parsegian, V. A., 1976, Measurement of forces between lecithin bilayers, Nature 259: 601–603.

    Article  Google Scholar 

  • LeNeveu, D. M., Rand, R. P., Parsegian, V. A. and Gingell, D., 1977, Measurement and modification of forces between lecithin bilayers, Biophys. J. 18: 209–230.

    Article  Google Scholar 

  • Lesslauer, W., Cain, J. E. and Blasie, J. K., 1972, X-ray diffraction studies of lecithin bimolecular leaflets with Incorporated fluorescent probes, Proc. Nat. Acad Sci. USA 69: 1499–1503.

    Article  PubMed  CAS  Google Scholar 

  • Lis, L. J., McAlister, M., Fuller, N., Rand, R. P. and Parsegian, V. A., 1982, Interactions between neutral phospholipid bilayer membranes, Biophys. J. 37: 657–666.

    PubMed  CAS  Google Scholar 

  • Lucy, J. A., 1978, in “Membrane Fusion,” Poste, G and Nicholson, G. L., ed., pp 26–304, Elsevier/North Holland, The Netherlands.

    Google Scholar 

  • MacDonald, R. C. and Simon, S. A., 1987, Lipid monolayer states and their relationship to bilayers, Proc. Nat. Acad. Sci. USA 84: 4089–4094.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, B., Ahkong, O. F. and Lucy, J. A., 1976, Poly(ethylene glycol), surface potential and cell fusion, Biochem. J. 158: 647.

    PubMed  CAS  Google Scholar 

  • Maggio, B. and Lucy, J. A., 1976, Polar-group behavior in mixed monolayers of phospholipids and fusogenic lipids, Biochem. J. 155: 353–364.

    PubMed  CAS  Google Scholar 

  • Marcelja, S. and Radic, N., 1976, Repulsion of interfaces due to boundary water, Chem. Phys. Lett. 42: 129–130.

    Article  CAS  Google Scholar 

  • Marra, J. and Israelachvili, J., 1985, Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions, Biochemistry 24: 4608–4618.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. J., 1978, The effect of cholesterol on the structure of phosphatidylcholine bilayers, Biochim. Biophys. Acta 513: 43–58.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. J. and Holloway, P. W., 1987, Determination of the depth of bromine atoms in bilayers formed from bromolipid probes, Biochemistry 26: 1783–1788.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. J., Magid, A. D. and Simon, S. A., 1987, Steric repulsion between phosphatidylcholine bilayers, Biochemistry 26: 7325–7332.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. J., Magid, A. D. and Simon, S. A., 1989a, Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes, Biochemistry 28: 17–25.

    Article  CAS  Google Scholar 

  • McIntosh, T. J., Magid, A. D. and Simon, S. A., 1989b, Range of the solvation pressure between lipid membranes: dependence on the packing density of solvent molecules, Biochemistry 28: 7904–7912.

    Article  CAS  Google Scholar 

  • McIntosh, T. J., Magid, A. D. and Simon, S. A., 1989c, Repulsive interactions between uncharged bilayers. Hydration and fluctuation pressures for monoglycerides, Biophys. J. 55: 897–904.

    Article  CAS  Google Scholar 

  • McIntosh, T. J., Magid, A. D. and Simon, S. A., 1990, Interactions between charged, uncharged, and zwitterionic bilayers containing phosphatidylglycerol, Biophys. J. 57: 1187–1197.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. J. and Simon, S. A., 1986, The hydration force and bilayer deformation: a reevaluation, Biochemistry 25: 4058–4066.

    Article  Google Scholar 

  • O’Brien, F. E. M. (1948) J. Sci. Instrum. 25: 73–76.

    Article  Google Scholar 

  • Ohki, S., 1985, Membrane fusion: theory and experiment, Studia Biophysica 110: 95–104.

    CAS  Google Scholar 

  • Ohki, S., 1988, Membrane fusion, hydration energy and hydrophobicity, Studia Biophysica 127: 89–97.

    CAS  Google Scholar 

  • Papahadjopoulos, D., Hui, S., Vail, W. J. and Poste, G., 1976, Studies on membrane fusion. I. interactions of pure phospholipid membranes and the effect of myristic acid, lysolecithin, protein and dimethylsulfoxide, Biochim. Biophys. Acta 448: 245–264.

    Article  CAS  Google Scholar 

  • Parsegian, V. A., Fuller, N. and Rand, R. P., 1979, Measured work of deformation and repulsion of lecithin bilayers, Proc. Nat. Acad. Sci. USA 76: 2750–2754.

    Article  PubMed  CAS  Google Scholar 

  • Parsegian, V. A., Rand, R. P., Fuller, N. L. and Rau, R. C., 1986, Osmotic Stress for the direct measurement of intermolecular forces, Methods in Enzymology 127: 400–416.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, R. H. and Pascher, I., 1979, The molecular structure of lecithin dihydrate, Nature 281: 499–501.

    Article  PubMed  CAS  Google Scholar 

  • Rand, R. P. and Parsegian, V. A., 1989, Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta 988: 351–376.

    Article  CAS  Google Scholar 

  • Schiby, D. and Ruckenstein, E., 1983, The role of the polarization layers in hydration forces, Chem. Phys. Lett. 95: 435–438.

    Article  CAS  Google Scholar 

  • Simon, S. A., Fink, C. A., Kenworthy, A. K. and McIntosh, T. J., 1991, The hydration pressure between lipid bilayers: a comparison of measurements using x-ray diffraction and calorimetry, Biophys. J. in press.

    Google Scholar 

  • Simon, S. A. and McIntosh, T. J., 1989a, Magnitude of the solvation pressure depends on dipole potential, Proc. Nat. Acad. USA 86: 9263–9267.

    Article  CAS  Google Scholar 

  • Simon, S. A. and McIntosh, T. J., 1989b, Steric repulsion between lipid membranes, Comments Mol. Cell. Biophys. 6: 175–195.

    Google Scholar 

  • Simon, S. A., McIntosh, T. J. and Latone, R., 1982, Influence of cholesterol on water penetration into bilayers, Science 216: 65–67.

    Article  PubMed  CAS  Google Scholar 

  • Simon, S. A., McIntosh, T. J. and Magid, A. D., 1988, Magnitude and range of the hydration pressure between lecithin bilayers as a function of head group density, J. Colloid Interface Sci. 126: 74–83.

    Article  CAS  Google Scholar 

  • Tanford, C., 1980, “The Hydrophobic Effect: Formation of Micelles & Biological Membranes,” John Wiley & Sons, New York.

    Google Scholar 

  • Tardieu, A., Luzzati, V., and Reman, F. C., 1973, Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases, J. Mol. Biol. 75: 711–733.

    Article  PubMed  CAS  Google Scholar 

  • Weast, R. C. (1984) “Handbook of Chemistry and Physics, 65th Edition;’ E-42, CRC Press, Boca Raton, Florida..

    Google Scholar 

  • White, S. H., Jacobs, R. F. and King, G. I., 1987, Partial specific volumes of lipid and water in mixtures of egg lecithin and water, Biophys. J. 52: 663–666.

    Article  PubMed  CAS  Google Scholar 

  • Worcester, D. L. and Franks, N. P., 1976, Sturctural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutron diffraction, J. Mol. Bio1.100: 359–378.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

McIntosh, T.J., Magid, A.D., Simon, S.A. (1991). Short-Range Repulsive Interactions between the Surfaces of Lipid Membranes. In: Ohki, S. (eds) Cell and Model Membrane Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3854-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3854-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6720-8

  • Online ISBN: 978-1-4615-3854-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics