Skip to main content

Inhibition of Sendai Virus Fusion and Phospholipid Vesicle Fusion: Implications for the Pathway of Membrane Fusion

  • Chapter
Cell and Model Membrane Interactions

Abstract

Membrane fusion is an essential step in the infection cycle of enveloped viruses. Fusion may occur with the plasma membrane or may occur by endocytosis of the virion followed by acidification and subsequent pH-induced fusion. Enveloped viruses possess an outer limiting membrane containing glycoproteins responsible for recognition of the target cell and mediation of the fusion event. Fusion may be facilitated by a dedicated protein, such as the F protein of Sendai, or the ability to facilitate fusion and the binding of the virion to the target membrane may involve a single protein species. Fusion of the viral envelope with the target membrane allows the entry of the viral genome and initiation of replication. At present an adequate understanding of the mechanism of the viral membrane fusion process is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asano, A., and K. Asano. 1984. Molecular mechanism of virus entry to target cells. Tumor Res. 19: 1–20.

    CAS  Google Scholar 

  • Asano, K., and A. Asano. 1985. Why is a specific amino acid sequence of F glycoproteins required for the membrane fusion reaction between envelope of HVJ (Sendai virus) and target cell membranes? Biochem. Int. 10: 115–122.

    PubMed  CAS  Google Scholar 

  • Bentz, J., and H. Ellens. 1988. Membrane fusion: Kinetics and mechanisms. Colloids and Surfaces 30: 65–112.

    Article  CAS  Google Scholar 

  • Brasseur, R., M. Vandenbranden, B. Cornet, A. Burny, and J.-M. Ruysscshaert. 1990. Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminue of viral fusion proteins. Biochim. Biophys. Acta 1029: 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Cai, W., B. Gu, and S. Person. 1988. Role of glycoprotein B of herpes eimplex virus type 1 in viral entry and cell fusion. J. Virol 62: 2596–2604.

    PubMed  CAS  Google Scholar 

  • Daniels, R. S., J. C. Downie, A. J. Hay, M. Knossow, J. J. Skehel, M. L. Wang, and D. C. Wiley. 1985. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40: 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Doms, R. W., A. Helenius, and J. White. 1985. Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change. J. Biol. Chem. 260: 2973–2981.

    PubMed  CAS  Google Scholar 

  • Elango, N., M. Satake, J. E. Coligan, E. Norrby, E. Camargo, and S. Venkatesan. 1985. Respiratory syncytial virus fusion glycoprotein: nucleotide sequence of mRNA, identification of cleavage activation site and amino acid sequence of N-terminus of F1 subunit. Nucleic Acids Res. 13: 1559–1574.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolaminecontaining liposomes and mechanism of the L-alpha to HII phase transition. Biochemistry 25: 4141–4147.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., D. P. Siegel, D. Alford, P. L. Yeagle, L. Boni, L.J. Lis, P. J. Quinn, and J. Bentz. 1989. Membrane fusion and inverted phases. Biochemistry 28: 3692–3703.

    Article  PubMed  CAS  Google Scholar 

  • Gagne, J., L. Stamatatos, T. Diacovo, S. W. Hui, P. L. Yeagle, and J. Silvius. 1985. Physical properties and surface interactions of bilayer membranes containing N-methylated phosphatidylethanolamines. Biochemistry 24: 4400–4408.

    Article  PubMed  CAS  Google Scholar 

  • Haywood, A. M. 1988. ’Entry’ of enveloped viruses into liposomes. In Molecular Mechanisms of Membrane Fusion. Edited by S. Ohki, D. Doyle, T. Flanagan, S. W. Hui and E. Meyhew. 427–440. NY: Plenum Publishing Corp.

    Chapter  Google Scholar 

  • Hoekstra, D. 1982a. Fluorescence method for measuring the kinetics of Ca2+-induced phase separations in phosphatidylserine-containing lipid vesicles. Biochemistry 21: 1055–1061.

    Article  CAS  Google Scholar 

  • Hoekstra, D. 1982b. Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion. Biochemistry 21: 2833–2840.

    Article  CAS  Google Scholar 

  • Hoekstra, D., K. Klappe, T. de Boer, and J. Wilschut. 1985. Characterization of the fusogenic properties of Sendai virus: Kinetics of fusion with erythrocyte membranes. Biochemistry 24: 4739–4745.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, M.C., A. Scheid, and P.W. Choppin. 1979. Reconstitution of membranes with individual paramyxovirus glycoproteins and phospholipid in cholate solution. Virology 95: 476–491.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C. 1969. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8: 344–352.

    Article  PubMed  CAS  Google Scholar 

  • Leventis, R., J. Gagne, N. Fuller, R. P. Rand, and J. R. Silvius. 1986. Divalent cation induced fusion and lipid lateral segregation in phosphatidylcholinephosphatidic acid vesicles. Biochemistry 25: 6978–6987.

    Article  PubMed  CAS  Google Scholar 

  • Manservigi, R., P. Spear, and A. Buchan. 1977. Cell fusion induced by herpes simplex virus is promoted and suppressed by different glycoproteins. Proc. Natl. Acad. Sci. USA 74: 3913–3917.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, M., T. Uchida, and Y. Okada. 1982. Glycoproteins of Sendai virus (HVJ) have a critical ratio for fusion between virus envelopes and cell membranes. Fxp. Cell Res. 142: 95–101.

    Article  CAS  Google Scholar 

  • Nicolaides, E., H. de Wald, R. Westland, M. Lipnik, and J. Posler. 1968. Potential antiviral agents. Carbobenzoxy di-and tripeptides active against measles and herpes viruses. J. Med. Chem. 11: 74–79.

    Article  PubMed  CAS  Google Scholar 

  • Novick, S.L., and D. Hoekstra. 1988. Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labeling. Proc. Natl. Acad. Sci. USA 85: 7433–7437.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, S., and M. Murata. 1988. Molecular mechanism of protein-mediated low pH-induced membrane fusions. In Molecular Mechanisms of Membrane Fusion. Edited by S. Ohki, D. Doyle, T. Flanagan, S. W. Hui and E. Meyhew. 357–366. NY: Plenum Publishing Corp.

    Chapter  Google Scholar 

  • Papahadjopoulos, D., W. J. Vail, C. Newton, S. Nir, K. Jacobson, G. Poste, and R. Lazo. 1977. Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochim. Biophys. Acta 465: 579–598.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, C.D., A. Berkovich, S. Rozenblatt, and W.J. Bellini. 1985. Use of antibodies directed against synthetic peptides for identifying cDNA clones, establishing reading frames, and deducing the gene order of measle virus. J. Virology 154: 186–193.

    Google Scholar 

  • Richardson, C.D., A. Scheid, and P.W. Choppin. 1980. Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F-1 or HA-2 viral polypeptides. Virology 105: 205–222.

    Article  PubMed  CAS  Google Scholar 

  • Roizman, B., and A. E. Sears. 1991. Herpes Simplex Viruses and Their Replication. In Fundamental Virology. Edited by B. N. Fields and D. M. Knipe. 849–896. New York: Raven Press.

    Google Scholar 

  • Ruigrok, R.W.H., A. Aitken, L.J. Calder, S.R. Martin, J.J. Skehel, S.A. Wharton, W. Weis, and D.C. Wiley. 1988. Studies on the structure of the influenza virus Haemagglutinin at the pH of membrane fusion. J. Gen. Vir. 69: 2785–2795.

    Article  CAS  Google Scholar 

  • Sarmiento, M., M. Haffey, and P. Spear. 1979. Membrane proteins specified by herpes simplex viruses. II. Role of glycoprotein VP7 (B2) in virion infectivity. J. Virol. 29: 1149–1158.

    PubMed  CAS  Google Scholar 

  • Scheid, A., and P.W. Choppin. 1974. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precurser protein of Sendai virus. Virology 57: 475–490.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, D.P. 1987. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal phases. 3. Isotropic and inverted cubic state formation via intermediates in transitions between Lα and HII phases. Chem. Phys. Lipids 42: 279–301.

    Article  Google Scholar 

  • Siegel, D. P., J. Banschbach, D. Alford, H. Ellens, L. Lis, P. J. Quinn, P. L. Yeagle, and J. Bentz. 1989a. Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases. Biochemistry 28: 3703–3709.

    Article  CAS  Google Scholar 

  • Siegel, D. P., J. L. Burns, M. H. Chestnut, and Y. Talmon. 1989b. Intermediates in membrane fusion and bilayer/non-bilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. Biophys. J. 56: 161–169.

    Article  CAS  Google Scholar 

  • Silvius, J. R., and J. Gagne. 1984. Lipid phase behavior and calcium-induced fusion of phosphatidylethanolamine-phosphatidylserine vesicles. Calorimetric and fusion studies. Biochemistry 23: 3232–3240.

    Article  CAS  Google Scholar 

  • Skehel, J.J., P.M. Bayley, E. B. Brown, S. R. Martin, M. D. Waterfield, J. White, I. A. Wilson, and D. C. Wiley. 1982. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. Natl. Acad. Sci. USA 79: 968–972.

    Article  PubMed  CAS  Google Scholar 

  • Stegmann, T., D. Hoekstra, G. Scherphof, and J. Wilschut. 1985. Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochemistry 24: 3107–3133.

    Article  PubMed  CAS  Google Scholar 

  • White, J., L. Kartenbeck, and A. Helenius. 1982. Membrane fusion activity of influenza virus. EMBO J. 1: 217–222.

    PubMed  CAS  Google Scholar 

  • Yeagle, P.L., 1987, “The Membranes of Cells”, Academic Press, San Diego.

    Google Scholar 

  • Yeagle, P. L., R. M. Epand, C. D. Richardson, and T. D. Flanagan. 1991. Effects of the “fusion peptide” from Measles Virus on the Structure of N-methyl Dioleoylphosphatidylethanolalmine Membranes and their Fusion with Sendai Virus. Biochim. Biophys. Acta: in press.

    Google Scholar 

  • Yeagle, P. L., W. C. Hutton, C. Huang, and R. B. Martin, 1975, Headgroup conformation and lipid-cholesterol association in phosphatidylcholine vesicles: a 31P {1H} nuclear Overhauser effect study, Proc. Nat. Acad. Sci USA,72: 3477–3481.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yeagle, P.L., Kelsey, D.R., Flanagan, T.D., Young, J. (1991). Inhibition of Sendai Virus Fusion and Phospholipid Vesicle Fusion: Implications for the Pathway of Membrane Fusion. In: Ohki, S. (eds) Cell and Model Membrane Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3854-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3854-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6720-8

  • Online ISBN: 978-1-4615-3854-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics