Skip to main content

A 75–110 GHz Sis Mixer With Integrated Tuning and Coupled Gain

  • Chapter
Nonlinear Superconductive Electronics and Josephson Devices

Abstract

A broadband waveguide SIS (superconductor-insulator-superconductor) mixer with no adjustable mechanical tuning elements for the 75–110 GHz band was constructed and tested. The design is a demonstration of a prototype receiver element in a focal plane array receiver. The large instantaneous bandwidth was accomplished with a broadband waveguide-to-microstrip transition and a scale-modeled microstripline circuitry. The transition to microstripline consisted of a waveguide single ridge 4-step Chebychev transformer. The last step of the ridge connected the waveguide to the microstripline circuit, which contained the SIS element in parallel with a thin film tuning inductor. The operation was double-sideband (DSB). The typical DSB mixer noise temperature, as measured between 79.5 and 110 GHz, was about 35 to 50 K at band center increasing to about 50–60 K at the band edges. The lowest mixer noise we obtained was 20 K at 80 GHz for a single untuned junction. For some junction geometries, gain was also observed between 80 to 110 GHz, with a maximum of +3 dB (DSB) at 100 GHz. No impedance transformers were used on the intermediate frequency (if) side. For several devices, negative dynamic resistance was observed on the first photon induced step below the gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Olsson, S. Rudner, E. Kollberg, and CO. Lindström, A Low Noise SIS Array Receiver for Radioastronomical Applications in the 35–50 GHz Band, Int. J. Infrared and Millimeter Waves 4: 847 (1983).

    Article  ADS  Google Scholar 

  2. D.P. Woody, R.E. Miller, and M.J. Wengler, 85–115-GHz Receivers for Radio Astronomy, IEEE Trans. Microwave Theory Tech. MTT-33: 90 (1985).

    Article  ADS  Google Scholar 

  3. S.K. Pan, M.J. Feldman, A.R. Kerr, and P. Timbie, A Low-Noise 115 GHz Receiver Using Superconducting Tunnel Junctions, Appl. Phys. Lett. 43: 786 (1983).

    Article  ADS  Google Scholar 

  4. K.H. Gundlach, R. Blundell, J. Ibruegger, and EJ. Blum, SIS Quasiparticle Mixer Receiver for Radio-Astronomy Applications, in “SQUID′85,” H.D. Hahlbohm and H. Liibbig, Walter de Gruyter & Co, Berlin, 1985, 987.

    Google Scholar 

  5. H. Ogawa, A. Mizuno, H. Hoko, H. Ishikawa, and Y. Fukui, A 110 GHz SIS Receiver for Radio Astronomy, Int. J. Infrared and Millmeter Wave 11: 717 (1990).

    Article  ADS  Google Scholar 

  6. C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.y. Räisänen, Quantum Limited Quasiparticle Mixers at 100 GHz, to be published in Appl. Phys. Lett. (1990).

    Google Scholar 

  7. S.K. Pan, A.R. Kerr, M.H. Feldman, A.W. Kleinsasser, J.W. Stasiak, R.L. Sandstrom, and W.J. Gallagher, An 85–116 GHz Receiver using Inductively Shunted Edge Junctions, IEEE Trans. Microwave Theory Tech. MTT-37: 580–592 (1989).

    Article  ADS  Google Scholar 

  8. A.V. Räisänen, D.G. Crété, P.L. Richards, and F.L. Lloyd, Low Noise SIS Mixer with Gain for 80–115 GHz, in: “Proceedings of an ESA Workshop on a Space-Borne Sub-Millimetre Astronomy Mission,” N. Longdon, ESA Publications Division ESTEC, Noordwijk, Segovia, Spain, 4–7 June 1986, 255.

    Google Scholar 

  9. W.R. McGrath, P.L. Richards, A.D. Smith, H. van Kempen, R.A. Batchelor, D.E. Prober, and P. Santhanam, Large Gain, Negative Resistance, and Oscillations in Superconducting Quasiparticle Heterodyne Mixers, Appl. Phys. Lett. 39: 655 (1981).

    Article  ADS  Google Scholar 

  10. A.R. Kerr, S.K. Pan, and M.J. Feldman, Infinite Available Gain in a 115 GHz SIS Mixer, Phvsica 108B: 1369 (1981).

    ADS  Google Scholar 

  11. L.R. D’Addario, An SIS Mixer for 90–120 GHz with Gain and Wide Bandwidth, Int’l J. Infrared Millimeter Waves 5: 1419–1442 (1984).

    Article  ADS  Google Scholar 

  12. J.R. Tucker, Quantum Limited Detection in Tunnel Junction Mixers, IEEE J. Quantum Electron. OE-15: 1234(1979).

    Article  ADS  Google Scholar 

  13. J.R. Tucker, Predicted Conversion Gain in Superconductor-Insulator-Superconductor Quasiparticle Mixers, Appl. Phys. Lett. 36: 477 (1980).

    Article  ADS  Google Scholar 

  14. N. Erickson, P. Goldsmith, C.R. Predmore, G.A. Novak, and P.J. Visceiso, A 15 Element Imaging Array for 100 GHz, 1990 MTT-S Digest: 973-976.

    Google Scholar 

  15. J.M. Payne, Multibeam Receiver for Millimeter-wave Radio Astronomy, Rev. Sci. Instl. 59, 1988: 1911–1919.

    Article  ADS  Google Scholar 

  16. S. Hopfer, The Design of Ridged Waveguides, IRE Trans. Microwave Theory Tech. MTT-3:20(1955).

    Article  ADS  Google Scholar 

  17. W.J.R. Hoefer and M.N. Burton, Closed-Form Expressions for the Parameters of Finned and Ridged Waveguides, IEEE Trans. Microwave Theory Tech. MTT-30: 2190 (1982).

    Article  ADS  Google Scholar 

  18. M.V. Schneider, B. Glance, and W.F. Bodtmann, Microwave and Millimeter Wave Hybrid Integrated Circuits for Radio Systems, Bell System Tech. J.: 1703 (1968).

    Google Scholar 

  19. R.E. Collin, Theory and Design of Wide Band Multisection Quarter-wave Transformers, Proc. IRE 43: 179(1955).

    Article  Google Scholar 

  20. K.L. Wan, A.K. Jain, and J.E. Lukens, Submillimeter Wave Generation Using Josephson Junction Arrays, IEEE Trans. Magn. MAG-25: 1076–1079(1989).

    Article  ADS  Google Scholar 

  21. S. Pagano, R. Monaco, and G. Costabile, Microwave Oscillator Using Arrays of Long Josephson Junctions, IEEE Trans. Magn. MAG-25: 1080–1083(1989).

    Article  ADS  Google Scholar 

  22. T. Nagatsuma, K. Enpuku, F. Irie, and K. Yoshida, Flux-Flow type Josephson Oscillator for Millimeter and Submillimeter Wave Region, J. Appl. Phys. 54: 3302–3309 (1983).

    Article  ADS  Google Scholar 

  23. K.E. Irwin, S.E. Schwarz, and T. Van Duzer, Planar Antenna-Coupled SIS Devices for Detection and Mixing, in:“Digest of the Sixth International Conference on Infrared and Millimeter Waves,” K.J. Button, IEEE, New York, 1981, pp. M-4-2.

    Google Scholar 

  24. V.P. Vinding, Radial Line Stubs as Elements in Strip Line Circuits, NEREM RECORD: 108 (1967).

    Google Scholar 

  25. B.A. Syrett, A Broad-Band Element for Microstrip Bias or Tuning Circuits, IEEE Trans. Microwave Theory Tech. MTT-28: 925 (1980).

    Article  ADS  Google Scholar 

  26. H.A. Atwater, Microstrip Reactive Circuit Elements, IEEE Trans. Microwave Theory Tech. MTT-31: 488 (1983).

    Article  ADS  Google Scholar 

  27. A. Shoji, S. Kosaka, F. Shinoki, M. Aoyagi, and H. Hayakawa, All Refractory Josephson Tunnel Junctions Fabricated by Reactive Ion Etching, IEEE Trans. Magn. MAG-19: 827–830 (1983).

    Article  ADS  Google Scholar 

  28. S. Morohashi, F. Shinoki, A. Shoji, M. Aoyagi, and H. Hayakawa, High Quality Nb/Al-A10x/Nb Josephson Junctions, Appl. Phvs. Lett. 46: 1179–1181 (1985).

    Article  ADS  Google Scholar 

  29. A.H. Worsham, D.E. Prober, J.H. Kang, J.X. Przybysz, and M.J. Rooks, High Quality Sub-Micron Nb Trilayer Tunnel Junctions for a 100 GHz SIS Receiver. Sept. (1990). Submitted to IEEE Trans. Magn. (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Winkler, D., Worsham, A.H., Ugras, N.G., Prober, D.E., Erickson, N.R., Goldsmith, P.F. (1991). A 75–110 GHz Sis Mixer With Integrated Tuning and Coupled Gain. In: Costabile, G., Pagano, S., Pedersen, N.F., Russo, M. (eds) Nonlinear Superconductive Electronics and Josephson Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3852-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3852-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6719-2

  • Online ISBN: 978-1-4615-3852-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics