Skip to main content

Phase Locking Of Fluxon Oscillations In Long Josephson Junctions

  • Chapter
Nonlinear Superconductive Electronics and Josephson Devices

Abstract

The study of phase locking of fluxon oscillations in long Josephson tunnel junctions has been stimulated by potential electronic applications of these devices. Single-junction fluxon oscillators subjected to an external microwave field can generate constant-voltage steps that cross over the zero-current axis, a phenomenon of some interest for voltage standard applications.1 Series-biased arrays of long junctions operating in the resonant fluxon oscillation mode appear to be serious candidates for employment as local oscillators in integrated superconducting heterodyne receivers for radio astronomy applications2; operating such an array in a coherent, phase-locked mode offers increased output power and reduced oscillator linewidth with respect to the figures attainable from a single-junction oscillator.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Costabile, R. Monaco, S. Pagano, and G. Rotoli, “Inverse ac Josephson effect in long junctions”, Phys. Rev. B 42, 2651 (1990).

    Article  ADS  Google Scholar 

  2. D.-G. Crete, P. Feautrier, M. Hanus, R. Monaco, and P. J. Encrenaz, “Nb/AlOx/Nb junctions for integrated superconducting heterodyne receiver”, in: Stimulated Effects in Josephson Devices, M. Russo and G. Costabile, eds. (World Scientific, Singapore, 1990), pp. 87–98.

    Google Scholar 

  3. R. Monaco, N. Gronbech-Jensen, and R. D. Parmentier, “Self locking of fluxon oscillations in series arrays of niobium Josephson tunnel junctions coupled to a linear resonator”, Phys. Lett. A (in press).

    Google Scholar 

  4. D. W. McLaughlin and A. C. Scott, “A multisoliton perturbation theory”, in: Solitons in Action, K. Lonngren and A. Scott, eds. (Academic Press, New York, 1978), pp. 201–256.

    Google Scholar 

  5. M. Salerno, M. R. Samuelsen, G. Filatrella, S. Pagano, and R. D. Parmentier, “Microwave phase locking of Josephson-junction fluxon oscillators”, Phys. Rev. B 41, 6641 (1990), and references therein.

    ADS  Google Scholar 

  6. A. Barone and G. Paternò, Physics and Applications of the Josephson Effect (Wiley, New York, 1982), Chap. 5.

    Book  Google Scholar 

  7. G. Filatrella, G. Rotoli, and R. D. Parmentier, “Phase locking of fluxon oscillations in long Josephson tunnel junctions with surface losses”, Phys. Lett. A 148, 122 (1990).

    Article  ADS  Google Scholar 

  8. M. Salerno and M. R. Samuelsen, “Different microwave couplings to long Josephson junctions phase locked at a zero field step”, this volume.

    Google Scholar 

  9. O. H. Olsen, N. F. Pedersen, M. R. Samuelsen, H. Svensmark, and D. Welner, “Perturbation treatment of boundary conditions for fluxon motion in long Josephson junctions”, Phys. Rev. B 33, 168 (1986).

    Article  ADS  Google Scholar 

  10. N. F. Pedersen and A. Davidson, “Phase locking of long Josephson junctions”, Phys. Rev. B 41, 178 (1990).

    Article  ADS  Google Scholar 

  11. H. G. Schuster, Deterministic Chaos (Physik-Verlag, Weinheim, 1984), Chap. 3.

    MATH  Google Scholar 

  12. G. Rotoli and G. Filatrella, “Chaotic dynamics in the map model of fluxon propagation in long Josephson junctions” (preprint, 1990).

    Google Scholar 

  13. R. L. Kautz, “Chaos in Josephson circuits”, IEEE Trans. Magnetics 19, 465 (1983).

    Article  ADS  Google Scholar 

  14. M. Salerno, “Phase-locking chaos in long Josephson junctions”, Phys. Lett. A 144, 453 (1990).

    Article  ADS  Google Scholar 

  15. R. Monaco, S. Pagano, and G. Costabile, “Superrradiant emission from an array of long Josephson junctions”, Phys. Lett. A 131, 122 (1988).

    Article  ADS  Google Scholar 

  16. J. C. Fernandez, R. Grauer, K. Pinnow, and G. Reinisch, “Phase-locked dynamical regimes to an external microwave field in a long, unbiased Josephson junction”, Phys. Lett. A 145, 333 (1990).

    Article  ADS  Google Scholar 

  17. J. C. Fernandez, G. Filatrella, and G. Reinisch, “Comparison between electric and magnetic rf drive in long Josephson junctions”, Phys. Lett. A (in press).

    Google Scholar 

  18. M. Cirillo, “Chaos and phase lock in long Josephson junctions”, J. Appl. Phys. 60, 338 (1986).

    Article  ADS  Google Scholar 

  19. M. Cirillo, “Dynamics of a non-autonomous sine-Gordon system modeling long Josephson junction”, J. Appl. Phys. (in press).

    Google Scholar 

  20. R. D. Parmentier (unpublished notes, 1990).

    Google Scholar 

  21. F. If, P. L. Christiansen, R. D. Parmentier, O. Skovgaard, and M. P. Soerensen, “Simulation studies of radiation linewidth in circular Josephson-junction oscillators”, Phys. Rev. B 32, 1512 (1985).

    Article  ADS  Google Scholar 

  22. N. Minorsky, Nonlinear Oscillations (Van Nostrand, New York, 1962), Chap. 18.

    MATH  Google Scholar 

  23. T. F. Finnegan and S. Wahlsten, “Microwave emission from coupled Josephson junctions”, in: Low Temperature Physics — LT-13, Vol. 3, K. D. Timmerhaus, W. J. O’Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1974), pp. 272–275.

    Google Scholar 

  24. M. Cirillo and F. L. Lloyd, “Phase lock of a long Josephson junction to an external microwave source”, J. Appl. Phys. 61, 2581 (1987).

    Article  ADS  Google Scholar 

  25. S. Pagano, R. Monaco, and G. Costabile, “Microwave oscillator using arrays of long Josephson junctions”, IEEE Trans. Magn. 25, 1080 (1989).

    Article  ADS  Google Scholar 

  26. T. Holst, J. Bindslev Hansen, N. Gronbech-Jensen, and J. A. Blackburn, “Phase locking between Josephson soli ton oscillators”, Phys. Rev. B 42, 127 (1990).

    Article  ADS  Google Scholar 

  27. N. Grønbech-Jensen, R. D. Parmentier, and N. F. Pedersen, “Phase-locking of fluxon oscillations in long Josephson junctions coupled through a resonator”, Phys. Lett. A 142, 427 (1989).

    Article  ADS  Google Scholar 

  28. N. Grønbech-Jensen, N. F. Pedersen, A. Davidson, and R. D. Parmentier, “Numerical study of long Josephson junctions coupled to a high-Q cavity”, Phys. Rev. B 42, 603S (1990).

    Article  ADS  Google Scholar 

  29. G. Filatrella, N. Grønbech-Jensen, M. Salerno, and N. F. Pedersen, (unpublished notes, 1990).

    Google Scholar 

  30. N. Grønbech-Jensen, M. R. Samuelsen, P. S. Lomdahl, and J. A. Blackburn, “Bunched soliton states in weakly coupled sine-Gordon systems”, Phys. Rev. B 42, 3976 (1990).

    Article  ADS  Google Scholar 

  31. R. Monaco and G. Costabile (unpublished notes, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filatrella, G. et al. (1991). Phase Locking Of Fluxon Oscillations In Long Josephson Junctions. In: Costabile, G., Pagano, S., Pedersen, N.F., Russo, M. (eds) Nonlinear Superconductive Electronics and Josephson Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3852-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3852-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6719-2

  • Online ISBN: 978-1-4615-3852-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics