Skip to main content

Superconducting Tunnel Junctions as Nuclear Particle Detectors

  • Chapter
Nonlinear Superconductive Electronics and Josephson Devices

Abstract

In reviewing the large variety of possibilities offered by superconductivity in the small scale applications, it is often neglected the important role which can be played by superconducting tunnel junctions as radiation detectors in physics and astrophysics. The growing interest of such devices in this context lies in the perspective of outstanding performances, partially already demonstrated, in the high energy spectrometry, in the fast discrimination, in the spatial resolution. In this article we shall confine our attention to the first topic. As far as the drawbacks of cryogenic requirements are concerned, it should be point out that conventional semiconductor junction detectors require liquid nitrogen not only during operation but also for storage since those devices are not thermally cyclable. In the other hand helium cryostat technology is dramatically improving and, if confined to a temperature of the order of a few degrees (1–4 K), cryocoolers extremely compact within today can provide the necessary cryogenic environment for space based equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Andrews, R.D. Fowler and M.C. Williams, Phys. Rev. 76, 154 (1944)

    Article  ADS  Google Scholar 

  2. G.H. Wood and B.L. White, Appl. Phys. Lett. 15, 237 (1969); Can J. Phys. 51, 2032 (1973)

    Article  ADS  Google Scholar 

  3. A. Barone “Superconductive Tunneling Detectors” World Scientific Publ. (1988) see also A. Barone, S. De Stefano, K.E. Gray Nucl. Inst. Meth. A235, 254 (1985)

    Google Scholar 

  4. A. Rothwarf and B.N. Taylor, Phys Rev Lett. 19, 27 (1967)

    Article  ADS  Google Scholar 

  5. M. Kurakado, J. Appl. Phys. 55, 3185 (1984)

    Article  ADS  Google Scholar 

  6. A. Barone, G. Darbo, S. De Stefano, G. Gallinaro, A. Siri, R. Vaglio, S. Vitale, Proc. LT17, pag 933, Elsevier Science Publ. (1984)

    Google Scholar 

  7. A. Barone, G. Darbo, S. De Stefano, G. Gallinaro, A. Siri, R. Vaglio, S. Vitale, Nucl. Instr. Meth. A234, 61 (1985)

    ADS  Google Scholar 

  8. D. Twerembold, Europhysics Lett. 1, 209 (1986)

    Article  ADS  Google Scholar 

  9. H. Kraus, Th. Peteins, F. Probst, F. W. von Feilitzsch, R.L. Mossbauer, V. Zaoek and E. Umlauf, Europhysics Lett. 1, 161 (1986)

    Article  ADS  Google Scholar 

  10. D. Twerembold and A. Zhender, J. Appl. Phys. 61, 1 (1987)

    Article  ADS  Google Scholar 

  11. Rothmund and A. Zehnder in “Superconductive Tunneling Detectors”, ed. by A. Barone, World Scientific Publ. (1988), p. 52

    Google Scholar 

  12. P. Garé,et al. IEEE Trans, on Magn., 25, 1351 (1989)

    Article  ADS  Google Scholar 

  13. M. Kurakado, A. Matsumura and T. Kasminaga, Tech. Dig. 8th Sensor Symposium, p.247 (1989) M. Kurakado, A. Matsumura, Sensors and Actuators, A21-A23, p.33 (1990)

    Google Scholar 

  14. C.C. Chi, M.M.T Loy, and D.C. Cronemayer, Phys. Rev. B23, 124 (1981)

    ADS  Google Scholar 

  15. B. Ivlev, G. Pepe, and U. Scotti di Uccio, Nucl. Instr. Meth. A (in press)

    Google Scholar 

  16. G.M. Eliasberg, Sov. Phys. JEPT 29, 698 (1969)

    ADS  Google Scholar 

  17. M. Kurakado and H. Hazaki, Nucl. Instr. Meth. 185, 141 (1981)

    Article  Google Scholar 

  18. D. Twerembold, in “Superconductive Tunneling Detectors”, ed. by A. Barone, World Scientific Publ. (1988), p. 38

    Google Scholar 

  19. A.W. Lichtemberger et al., IEEE Trans. Magn. 25., 1247 (1989) S. Morohashi, and S. Hasuo, J. Appl. Phys, 61, 4835 (1987) K. Ishibashi, et al. IEEETrans. Magn. 25., 1354 (1989)

    Article  ADS  Google Scholar 

  20. M. Kurakado, T. Takahashi and A. Matsumura, Appl. Phys. Lett., 57, 1933, (1990)

    Article  ADS  Google Scholar 

  21. S.B. Kaplan et al., Phys. Rev. fill, 4854 (1976)

    Google Scholar 

  22. E. Hebrank et al., Nucl. Instrum, and Meth., A288, 541 (1990)

    ADS  Google Scholar 

  23. This estimate has been obtained from a very high quality junction (Vm=90mV at T=4.2K) recently obtained in our laboratory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barone, A. et al. (1991). Superconducting Tunnel Junctions as Nuclear Particle Detectors. In: Costabile, G., Pagano, S., Pedersen, N.F., Russo, M. (eds) Nonlinear Superconductive Electronics and Josephson Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3852-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3852-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6719-2

  • Online ISBN: 978-1-4615-3852-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics