Skip to main content

Molecular Analysis of Tumorigenesis in Drosophila

  • Chapter
Anticarcinogenesis and Radiation Protection 2

Abstract

Genetic and molecular analyses of Drosophila have clearly demonstrated that tumorigenesis may arise from inactivation of genes controlling cell growth and differentiation (1,2). Recessive mutations in a series of genes were shown to interrupt the differentiation of certain primordial cells and result in uncontrolled and invasive cell proliferation. As a consequence, the mutant animals form malignant tumors in either the optic centers of the larval brain, the imaginal discs, or the hematopoietic organs. Simultaneous with the appearance and growth of the neoplasms, the development of the mutant animals become impaired, and these animals die as larvae or pseudopupae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Gateff, Malignant neoplasms of genetic origin in the fruit fly Drosophila melanogaster. Science 200:1448–1459 (1978).

    Article  PubMed  CAS  Google Scholar 

  2. B.M. Mechler, W. McGinnis, and W.J. Gehring, Molecular cloning of lethal(2)giant larvae, a recessive oncogene of Drosophila melanogaster. EMBO J 4:1551–1557 (1985).

    PubMed  CAS  Google Scholar 

  3. E. Gateff and H.A. Schneiderman, Neoplasms in mutant and cultured wild-type tissues of Drosophila. Natl Cancer Inst Monogr 31:865–897 (1969).

    Google Scholar 

  4. L. Jacob, M. Opper, B. Metzroth, B. Phannavong, and B.M. Mechler, Structure of the 1(2)gl gene of Drosophila and delimitation of its tumor suppressor domain. Cell 50:215–225 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. M. Opper, G. Schuler, and B.M. Mechler, Hereditary suppression of lethal(2)giant larvae malignant tumor development in Drosophila by gene transfer. Oncogene 1:91–96 (1987).

    PubMed  CAS  Google Scholar 

  6. A.G. Knudson Jr., Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823 (1971).

    Article  PubMed  Google Scholar 

  7. T.P. Dryja, J.M. Rapaport, J.M. Joyce, and R.A. Petersen, Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci USA 83:7391–7394 (1981).

    Article  Google Scholar 

  8. S.M. Friend, R. Bernards, S. Rogelj, R.A. Weinberg, J. M. Rapaport, D.M. Albert, and T.P. Dryja, A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 823:643–646 (1986).

    Article  Google Scholar 

  9. W.-H. Lee, R. Bookstein, F. Hong, L.-J. Young, J.-Y. Shew, and E.-Y.H.P. Lee, Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235:1394–1399 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. E.R. Fearon, K.R. Cho,J.M. Nigro, S.E. Kern, J.W. Simons, J.M. Ruppert, S.R. Hamilton, A.C. Preisinger, G. Thomas, K.W. Kinzler, and B. Vogelstein, Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56 (1990).

    CAS  Google Scholar 

  11. K.M. Call, T. Glaser, C.Y. Ito, A.J. Buckler, J. Pelletier, D.A. Haber, E.A. Rose, A. Kral, H. Yeger, W.H. Lewis, C. Jones, and D.E. Housman, Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. E.B. Lewis, The relation of repeats to position effect in Drosophila melanogaster. Carnegie Inst. Washington Publ. No. 552 (1945).

    Google Scholar 

  13. J.A. Campos-Ortega and V. Hartenstein, “The Embryonic Development of Drosophila melanogaster”. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.

    Google Scholar 

  14. G. Shaw and R.A. Kamen, A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. M.A. Dalrymple, S. Petersen-Bjorn, J.D. Friesen, and J.D. Beggs, The product of the PRP4 gene of S. cerevisiae shows homology to subunits of G proteins. Cell 58:811–812 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mechler, B. (1991). Molecular Analysis of Tumorigenesis in Drosophila . In: Nygaard, O.F., Upton, A.C. (eds) Anticarcinogenesis and Radiation Protection 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3850-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3850-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6718-5

  • Online ISBN: 978-1-4615-3850-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics