Skip to main content

Janus Neutron Irradiation of a Mouse Cell Line Containing a Shuttle Vector Plasmid

  • Chapter
Anticarcinogenesis and Radiation Protection 2

Abstract

Recent reports indicate that high-LET neutrons are significantly more toxic to biological systems than low-LET radiation (1). On a unit dose basis, neutrons are much more effective in transforming cultured cells than are X or gamma rays (2). Also, they are 2.7 times more effective in producing chromosomal aberrations (3) and 10 times more efficient in inducing mutations in mammalian cells than are gamma rays (4). In contrast, certain sources of neutrons are no more effective than gamma rays at producing double-strand DNA breaks (DSB) and are actually less effective at producing single strand DNA breaks (SSB) (5). For example, the relative biological effectiveness (RBE) for JANUS neutron-induced DSBs is 1, while the RBEs for chromosomal aberrations, mutations, cellular transformation, and carcinogenesis are in the range of 4 to 20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.K. Hill, F.M. Buonaguro, C.P. Myers, A. Han and M.M. Elkind, Fission-spectrum neutrons at reduced dose rates enhance neoplastic transformation. Nature 289, 67–69 (1982).

    Article  Google Scholar 

  2. C.K. Hill, B.A. Carnes, A. Han and M.M. Elkind, Neoplastic transformation is enhanced by multiple low dose of fission-spectrum neutrons. Radiat.Res. 102, 404–410 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. J.L. Schwartz, S.M. Giovanazzi, T. Karrison, C. Jones and D.J. Grdina, 2-[(aminopropyl) amino] ethanethiol-mediated reductions in “Co gamma ray and fission-spectrum neutron-induced chromosome damage in V79 cells. Radiat. Res. 113, 145–154 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. D. J. Grdina, B. Nagy and C.P. Sigdestad, Radioprotectors in treatment therapy to reduce risk in secondary tumor induction. Pharmacol. Ther. 37, 21–25 (1988).

    Article  Google Scholar 

  5. K.M. Prise, S. Davies, and B.D. Michael, The relationship between radiation-induced DNA double-strand breaks and cell killing in hamster V79 fibroblasts irradiated with 250 kVp x-rays, 2.3 MeV neutrons or 238Pu a-particles. Int. J. Radiat. Biol. 52, 893–902 (1987).

    Article  CAS  Google Scholar 

  6. D.J. Grdina, B. Nagy, C.K. Hill, R.L. Wells and C. Peraino, The radioprotector WR-1065 reduces radiation-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Carcinogenesis 6, 929–931 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. B. Nagy, P.J. Dale and D.J. Grdina, Protection against cis-diamminedichloroplatinum cytotoxicity and mutagenicity in V79 cells by 2-[(aminopropyl)amino]ethanethiol. Cancer Res. 46, 1132–1135 (1986).

    PubMed  CAS  Google Scholar 

  8. B. Nagy and D.J. Grdina, Protective effects of 2-[(aminopropyl) amino] ethanethiol against bleomycin and nitrogen mustard-induced mutagenicity in V79 cells. RInt. J. adiat. Oncol. Biol. Phys. 12, 1475–1478 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. C.K. Hill, B. Nagy, C. Peraino and D.J. Grdina, 2-[(aminopropyl) amino] ethanethiol (WR-1065) is anti-neoplastic and anti-mutagenic when given during “Co 7-ray irradiation. Carcinogenesis 2, 665–668 (1986).

    Article  Google Scholar 

  10. L. Milas, N. Hunter, C.L. Stephens and L.J. Peters, Inhibition of radiation carcinogenesis by S-2-(3-amino-propylamino)ethylphosphorothioic acid. Cancer Res. 44, 5567–5569 (1984).

    PubMed  CAS  Google Scholar 

  11. C.A. Apffel, J.E. Walker and S. Issarescu, Tumor rejection in experimental animals treated with radioprotective thiols. Cancer Res. 35, 429–437 (1975).

    PubMed  CAS  Google Scholar 

  12. D.J. Grdina, C. Peraino, B.A. Carnes and C.K Hill, Protective effect of S-2-(3-aminopropylamino)ethylphosphorothioic acid against induction of altered hepatocyte foci in rats treated once with gamma radiation within one day after birth. Cancer Res. 45, 5379–5381 (1985).

    PubMed  CAS  Google Scholar 

  13. D.J. Grdina, C.P. Sigdestad, P.J. Dale and J.M. Perrin, The effect of 2-[(aminopropyl) amino] ethanethiol on fission-neutron-induced DNA damage and repair. Br. J. Cancer 59, 17–21 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. R.B. DuBridge and M.P. Calos, Recombinant shuttle vectors for the study of mutation in mammalian cells. Mutagenesis 3, 1–9 (1988).

    Article  Google Scholar 

  15. C.R. Ashman, Retroviral shuttle vectors as a tool for the study of mutational specificity. Mutat. Res. 220, 143–149 (1989).

    CAS  Google Scholar 

  16. C.R. Ashman, P. Jagadesswaran and R.L. Davidson, Efficient recovery and sequencing of mutant genes from mammalian chromosomal DNA. Proc. Natl. Acad. Sci. USA 83, 3356–3360 (1986).

    Article  PubMed  CAS  Google Scholar 

  17. J.W. Littlefield, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145, 709–710 (1964).

    Article  PubMed  CAS  Google Scholar 

  18. Y. Gluzman, SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. B. Hirt, Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967).

    Article  PubMed  CAS  Google Scholar 

  20. P.E. Brown, Mechanism of action of aminothiol radioprotectors. Nature 213, 363–365 (1967).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagy, B., Grdina, D.J., Ashman, C.R. (1991). Janus Neutron Irradiation of a Mouse Cell Line Containing a Shuttle Vector Plasmid. In: Nygaard, O.F., Upton, A.C. (eds) Anticarcinogenesis and Radiation Protection 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3850-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3850-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6718-5

  • Online ISBN: 978-1-4615-3850-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics