Skip to main content

A Perspective of Resonant Tunneling

  • Chapter
Resonant Tunneling in Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 277))

Abstract

We provide a perspective of the development of resonant tunneling over the last two decades. The work starts with a consideration of different semiconductor materials, proceeds to discuss the effects of band structure and electron dynamics, continues to describe systems of multiple barriers and low dimensional electrons, and ends with a summary of device applications. The emphasis is on major experimental observations, which serve as cornerstones of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. L. Chang, L. Esaki and R. Tsu, “Resonant Tunneling in Semiconductor Double Barriers”, Appl. Phys. Lett. 24, 593 (1974).

    Article  ADS  Google Scholar 

  2. L. L. Chang, L. Esaki, A. Segmuller and R. Tsu, “Resonant Electron Transport in Semiconductor Barrier Structures”, in Proc. 12th Int. Conf. Semicond. Phys., ed. by M. H. Pilkuhn, Stuttgart 1974 (B. G. Teubner, Stuttgart, 1974), p. 688.

    Google Scholar 

  3. L. Esaki and L. L. Chang, “New Transport Phenomenon in a Semiconductor Superlattice”, Phys. Rev. Lett. 33, 495 (1974).

    Article  ADS  Google Scholar 

  4. D. Bohm, “Quantum Theory” (Prentice-Hall, Englewood, 1951), p. 283.

    Google Scholar 

  5. E. O. Kane, in Tunneling Phenomena in Solids, ed. by E. Burstein and S. Lundquist (Plenum, New York, 1969), p. 1.

    Chapter  Google Scholar 

  6. R. Tsu and L. Esaki, “Tunneling in a Finite Superlattice”, Appl. Phys. Lett. 22,562 (1973).

    Article  ADS  Google Scholar 

  7. L. L. Chang and L. Esaki, “Electronic Properties of InAs-GaSb Superlattices”, Surf. Sci. 98,70 (1980).

    Article  ADS  Google Scholar 

  8. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenward, C. D. Parker and D. D. Peck, “Resonant Tunneling Through Quantum Wells at Frequencies up to 2.5 THz”, Appl. Phys. Lett., 43,588 (1983).

    Article  ADS  Google Scholar 

  9. S. Luryi, “Frequency Limit of Double-Barrier Resonant Tunneling Oscillators”, Appl. Phys. Lett. 47,490 (1985).

    Article  ADS  Google Scholar 

  10. E. E. Mendez, W. I. Wang, B. Ricco and L. Esaki, “Resonant Tunneling of Holes in AlAs-GaAs-AlAs Heterostructures”, Appl. Phys. Lett. 47,415 (1985).

    Article  ADS  Google Scholar 

  11. T. J. Shewchuk, P. C. Chapin, P. D. Coleman, W. Kopp, R. Fischer and H. Morkoc, “Resonant Tunneling Oscillations in a GaAs-A1GaAs Heterostructure at Room Temperature”, Appl. Phys. Lett. 46,508 (1985).

    Article  ADS  Google Scholar 

  12. T. Inata, S. Muto, Y. Nakata, T. Fujii, H. Ohnishi and S. Hiyamizu, “Excellent Negative Differential Resistance of InAlAs/InGaAs Resonant Tunneling Barrier Structures Grown by MBE”, Jpn. J. Appl. Phys. 25,L983 (1986).

    Article  ADS  Google Scholar 

  13. T. H. H. Vuong, D. C. Tsui and W. T. Tsang, Appl. Phys. Lett. 50,212 (1987).

    Article  ADS  Google Scholar 

  14. R. Beresford, L. F. Luo, K. F. Longenbach and W. I. Wang, “Resonant Inter-band Tunneling Through a 110 nm In As Quantum Well”, Appl. Phys. Lett. 56,551 (1990).

    Article  ADS  Google Scholar 

  15. S. Sen, F. Capasso, A. C. Gossard, R. Spah, A. Hatchinson and S. Chu, “Observation of Resonant Tunneling Through a Compositionally Graded Parabolic Quantum Well”, Appl. Phys. Lett. 51,1428 (1987).

    Article  ADS  Google Scholar 

  16. Ch. Zeller, G. Abstreiter and K. Ploog, “Resonant Tunneling in Doping Quantum Well Structures”, Surf. Sci. 142,456 (1984).

    Article  ADS  Google Scholar 

  17. H. C. Liu, D. Landheer, M. Buchanan and D. C. Houghton, “Resonant Tunneling in Si/SiGe Double Barrier Structures”, Appl. Phys. Lett. 52,1809 (1988).

    Article  ADS  Google Scholar 

  18. S. S. Rhee, J. S. Park, R. P. G. Karunasiri, Q. Ye and K. L. Wang, “Resonant Tunneling Through a Si/GeSi/Si Heterostructure on a GeSi Buffer Layer”, Appl. Phys. Lett. 53,204 (1988).

    Article  ADS  Google Scholar 

  19. J. B. Xia, “Theory of Hole Resonant Tunneling in quantum Well Structures”, Phys. Rev. B38,8365 (1988).

    ADS  Google Scholar 

  20. R. Wessel and M. Altarelli, “Resonant Tunneling of Holes in Double Barrier Heterostructures in the Envelope Function Approximation”, Phys. Rev. B39,12802 (1989); also Phys. Rev. B40,12457 (1989)

    Google Scholar 

  21. E. E. Mendez, L. Esaki and W. I. Wang, “Resonant Magneto-Tunneling in GaA1As-GaAs-GaAlAs Heterostructures” Phys. Rev. B33, 2893 (1986).

    ADS  Google Scholar 

  22. M. L. Leadbeater, L. Eaves, P. E. Simmons, G. A. Toombs, F. W. Sheard, P. A. Claxton, G. Hill and M. A. Pate, “Magnetic Field Studies of Negative Differential Conductivity in Double Barrier Resonant Tunneling Structure Based on InP/InGaAs”, Solid State Electron. 31, 707 (1988).

    Article  ADS  Google Scholar 

  23. L. Eaves, “Some Recent Developments in the Physics of Resonant Tunneling”, private communication, (to be presented at the NATO ASI on “Highlights of the Eighties and Future Prospects in Condensed Matter Physics”, Biarritz, (Sept. 16–21, 1990).

    Google Scholar 

  24. E. E. Mendez, E. Calleja and W. I. Wang, “Tunneling Through Indirect-Gap Semiconductor Barriers”, Phys. Rev. B34, 6026 (1986).

    ADS  Google Scholar 

  25. E. E. Mendez, E. Calleja, C. E. T. Goncalves da Silva, L. L. Chang and W. I. Wang, “Observation by Resonant Tunneling of High-Energy States in GaAs-GaAlAs Quantum Wells”, Phys. Rev. B33, 7368 (1986).

    ADS  Google Scholar 

  26. D. Z. Y. Ting and Y. C. Chang, “T-X Mixing in GaAs-AIGaAs and A1GaAs/AlAs Superlattices”, Phys. Rev. B36, 4359 (1987).

    ADS  Google Scholar 

  27. T. Ando and H. Akera, “Connection of Envelope Functions at Semiconductor Heterointerf aces II, Mixings of T and X Valleys in GaAs/GaAIAs”, Phys. Rev. B46, 11619 (1989).

    ADS  Google Scholar 

  28. M. Buttiker and R. Landauer, “Traversal Time for Tunneling”, Phys. Rev. Lett. 49, 1739 (1982).

    Article  ADS  Google Scholar 

  29. T. C. L. G. Sollner, P. E. Tannenwald, D. D. Peck and W. D. Goodhue, “Quantum Well Oscillators”, Appl. Phys. Lett. 45, 1319 (1984).

    Article  ADS  Google Scholar 

  30. J. F. Whitaker, G. A. Mourou, T. C. L. G. Sollner and W. D. Goodhue, “Picosecond Switching Time Measurement of a Resonant Tunneling Diode”, Appl. Phys. Lett. 53, 385 (1988).

    Article  ADS  Google Scholar 

  31. D. D. Coon and H. C. Liu, Appl. Phys. Lett. “Frequency Limit of Double Barrier Resonant Tunneling Oscillators”, 49, 94 (1986).

    Article  ADS  Google Scholar 

  32. W. R. Frensley, “Quantum Transport Calculation of Small-Signal Response of a Resonant Tunneling Diode”, Appl. Phys. Lett. 51, 448 (1987).

    Article  ADS  Google Scholar 

  33. A. D. Stone and P. A. Lee, “Effect of Inelastic Processes on Resonant Tunneling in One Dimension”, Phys. Rev. Lett. 54, 1196 (1985).

    Article  ADS  Google Scholar 

  34. T. Weil and B. Vinter, “Equivalence Between Resonant Tunneling and Sequential Tunneling in Double-Barrier Diodes”, Appl. Phys. Lett. 50, 1281 (1987).

    Article  ADS  Google Scholar 

  35. M. Jonson and A. Grincwajg, “Effect of Inelastic Scattering on Resonant and Sequential Tunneling in Double-Barrier Heterostructures”, Appl. Phys. Lett. 51, 1729 (1987).

    Article  ADS  Google Scholar 

  36. M. Buttiker, “Coherent and Sequential Tunneling in Series Barriers”, IBM J. Res. Develop., 32, 63 (1988); also this volume.

    Article  MathSciNet  Google Scholar 

  37. M. Tsuchiya, T. Matsusue and H. Sakaki, “Tunneling Escape Rate of Electrons from Quantum Well in Double Barrier Heterostructures”, Phys. Rev. Lett., 59, 2356 (1987).

    Article  ADS  Google Scholar 

  38. T. B. Norris, N. Vodjdani, B. Vinter, C. Weisbuch and G. A. Mourou, “Charge-Transfer-State Photoluminescence in Asymmetric Coupled Quantum Wells”, Phys. Rev. B40, 1392 (1989).

    ADS  Google Scholar 

  39. D. Y. Oberli, J. Shah, T. C. Damen, C. W. Tu, T. Y. Chang, D. A. B. Miller, J. E. Henry, R. F. Kopf, N. Sauer and A. E. DiGiovanni, “Direct Measurement of Resonant and Nonresonant Tunneling Times in Asymmetric Coupled Quantum Wells”, Phys. Rev. B40,3028 (1989).

    ADS  Google Scholar 

  40. V. J. Goldman, D. C. Tsui and J. E. Cunningham, “Observation of Intrinsic Bistability in Resonant Tunneling Structures”, Phys. Rev. Lett. 58,1256 (1987); also Solid State Electron. 31,731 (1988).

    Google Scholar 

  41. M. L. Leadbeater, E. S. Alves, L. Eaves, M. Henin, O. H. Hughes, F. W. Sheard and G. A. Toombs, “Charge Build-Up and Intrinsic Bistability in an Asymmetric Resonant-Tunneling Structure”, Semicond. Sci. Technol. 3,1060 (1988).

    Article  ADS  Google Scholar 

  42. J. F. Young, B. M. Wood, G. C. Aers, R. W. S. Devine, H. C. Liu, D. Landheer, M. Buchanan, A. L. Springthorpe and P. Mandeville, “Determination of Charge Accumulation and Its Characteristic Time in Double-Barrier Resonant Tunneling Structures Using Steady-State Photoluminescence”, Phys. Rev. Lett. 60,2085 (1988).

    Article  ADS  Google Scholar 

  43. D. G. Hayes, M. S. Skolnick, P. E. Simmonds, L. Eaves, D. P. Halliday, M. L. Leadbeater, M. Henini and O. H. Hughes, “Optical Investigation of Charge Accumulation and Bistability in an Asymmetric Double-Barrier Resonant Tunneling Heterostructure”, Surf. Sci., 228,373 (1990).

    Article  ADS  Google Scholar 

  44. T. Nakagama, H. Imamoto, T. Kojima and K. Ohta, “Observation of Resonant Tunneling in A1GaAs/GaAs Triple Barrier Diodes”, Appl. Phys. Lett. 49,73 (1986).

    Article  ADS  Google Scholar 

  45. H. T. Grahn, H. Schneider and K. v. Klitzing, “Optical Detection of High-Field Domains in GaAs/AlAs Superlattices”, Appl. Phys. Lett. 54,1757 (1989).

    Article  ADS  Google Scholar 

  46. R. A. Davies, M. J. Kelly and T. M. Kerr, “Tunneling Between Two Strongly Coupled Superlattices”, Phys. Rev. Lett. 55,1114 (1985).

    Article  ADS  Google Scholar 

  47. R. J. Aggarwal, M. A. Reed, W. R. Frensley, Y. C. Kao and J. H. Luscombe, “Tunneling pectroscopic Study of Finite Superlattices”, Appl. Phys. Lett. 57,707 (1990).

    Article  ADS  Google Scholar 

  48. M. A. Reed and J. W. Lee, “Resonant Tunneling in Double Superlattice Barrier Heterostructures”, Superlattices and Microstructures, 3,111 (1987).

    Article  ADS  Google Scholar 

  49. F. Capasso, K. Mohammed and A. Y. Cho, “Sequential Resonant Tunneling Through a Multiquantum-Well Superlattice”, Appl. Phys. Lett. 45,478 (1986).

    Article  ADS  Google Scholar 

  50. L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors”, IBM J. Res. Develop. 14,65 (1970).

    Article  Google Scholar 

  51. L. L. Chang, L. Esaki, W. E. Howard and R. Ludeke, “The Growth of a GaAs-GaA1As Superlattice”, J. Vac. Sci. Technol. 10,11 (1973).

    Article  ADS  Google Scholar 

  52. A. Sibille, J. F. Palmier, H. Wang and F. Mollot, “Observation of Esaki-Tsu Negative Differential Velocity in GaAs/AlAs Superlattices”, Phys. Rev. Lett. 64,52 (1990).

    Article  ADS  Google Scholar 

  53. F. Beltram, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. G. Chu and A. Y. Cho, “Scattering-Controlled Transmission Resonances and Negative Differential Conductance by Field-Induced Localization in Superlattices”, Phys. Rev. Lett. 64,3167 (1990).

    Article  ADS  Google Scholar 

  54. E. E. Mendez and L. L. Chang, “Tunneling Between Two-Dimensional Electron Gas”, Surf. Sci. 229,173 (1990).

    Article  ADS  Google Scholar 

  55. W. Demmerle, J. Smoliner, G. Berthold, E. Goruik, G. Weimann and W. Schlapp, “Magneto-Tunneling Between Barrier-Separated 2D Electron Gas Systems”, Surf. Sci. 229,169 (1990).

    Article  ADS  Google Scholar 

  56. H. C. Liu and G. C. Aers, “Theory of the Vertical Transport Through One, Two and Three Dimensionally Confined Quantum Wells”, Solid State Commun. 67, 1131 (1988); also J. Appl. Phys. 65, 4908 (1989).

    Google Scholar 

  57. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore and A. E. Wetsel, “Observations of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure”, Phys. Rev. Lett. 60,535 (1988).

    Article  ADS  Google Scholar 

  58. T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews and G. J. Davies, “One-Dimensional Conduction in the 2D Electron Gas of a GaAs-A1GaAs Heterojunction”, Phys. Rev. Lett. 56,1198 (1986).

    Article  ADS  Google Scholar 

  59. S. Y. Chou, D. R. Allee, R. F. W. Pease and J. S. Harris, “Observation of Electron Resonant Tunneling in a Lateral Dual-Gate Resonant Tunneling Field-Effect Transistor”, Appl. Phys. Lett. 55 177 (1989).

    Article  ADS  Google Scholar 

  60. T. E. Kopley, P. L. McEuen and R. G. Wheeler, “Resonant Tunneling Through Simple Electronic States and Its Suppression in a Magnetic Field”, Phys. Rev. Lett. 61,1654 (1988).

    Article  ADS  Google Scholar 

  61. C. G. Smith, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie and G. A. C. Jones, “The Transition From One-to Zero-Dimensional Ballistic Transport”, J. Phys. C21,L893 (1988).

    ADS  Google Scholar 

  62. E. R. Brown, W. D. Goodhue and T. C. L. G. Sollner, “Fundamental Oscillations up to 200 GHz in Resonant Tunneling Diodes and New Estimates of Their Maximum Oscillation Frequency from Stationary-State Tunneling Theory”, J. Appl. Phys. 64,1519 (1988); also T. C. L. G. Sollner, et al. in this volume.

    Article  ADS  Google Scholar 

  63. N. Tokoyama, K. Inamura, S. Muto, S. Hiyamizu and H. Nishi, “A New Functional, Resonant-Tunneling Hot Electron Transistor”, Jpn. J. Appl. Phys. 24,L853 (1985).

    Article  Google Scholar 

  64. F. Capasso and R. A. Kiehl, “Resonant Tunneling Transistor with Quantum Well Base and High Energy Injection: A new Negative Differential Resistance Device”, J. Appl. Phys. 58,1366 (1985).

    Article  ADS  Google Scholar 

  65. F. Capasso, S. Sen, A. C. Gossard, A. L. Hutchinson and J. H. English, “Quantum-Well Resonant Tunneling Bipolar Transistor Operating at Room Temperature”, IEEE Electron Device Lett. 7, 573 (1986).

    Article  Google Scholar 

  66. T. K. Woodward, T. C. McGill and R. D. Burnham, “Experimental Realization of a Resonant Tunneling Transistor”, Appl. Phys. Lett. 50,451 (1987).

    Article  ADS  Google Scholar 

  67. N. Yokoyama, S. Inamura, T. Ohshima, H. Nishi, S. Muto, K. Kondo and S. Hiyamizu, “Tunneling Hot Electron Transistor Using GaAs/AlGaAs Heterojunctions”, Jpn. J. Appl. Phys. 23,L311 (1984).

    Article  ADS  Google Scholar 

  68. M. Heiblum, M. V. Fischetti, W. P. Dumke, D. J. Frank, I. M. Anderson, C. M. Knoedler and L. Osterling, “Electron Interference Effects in Quantum Wells: Observation of Bound and Resonant States”, Phys. Rev. Lett. 58,816 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, L.L. (1991). A Perspective of Resonant Tunneling. In: Chang, L.L., Mendez, E.E., Tejedor, C. (eds) Resonant Tunneling in Semiconductors. NATO ASI Series, vol 277. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3846-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3846-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6716-1

  • Online ISBN: 978-1-4615-3846-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics