Skip to main content

Experimental Embryology In Leeches: Cellular and Molecular Approaches

  • Chapter
Experimental Embryology in Aquatic Plants and Animals

Part of the book series: NATO ASI Series ((NSSA,volume 195))

  • 166 Accesses

Abstract

Among the annelids, glossiphoniid leeches, and in particular Helobdella triserialis, have become a favorite preparation for modern experimental embryology, and are currently used both for cellular and molecular genetic studies of development. The principal adventages of Helobdella as a model organism accrue from the large cells and well defined lineages, important experimental advantages lacking in animal species such as Drosophila. The eggs of glossiphoniid leeches are relatively large and the yolk of the egg is the major nutrient source for the developing embryo, enabling embryos to be cultured separately from the parent in a simple salt solution. Development from egg to adult is direct with no intervening trochophore or metamorphosis seen in polychaet annelids. The early embryos comprise large cells that are individually identifiable and accessible to experimental manipulation. Their suitability as experimental material was recognised by Charles Whitman in the 1890’s (Whitman, 1878). On the basis of his observations in the light microscope on the early cleavage of a glossiphoniid leech egg, Whitman first stated the idea that each identified cell in the early embryo is developmentally distinct and that each identified blastomere and the clone of its descendant cells plays a specific predestined role in later development. In the 1970’s, new techniques for lineage analysis by intracellular injection of tracers were developed using leeches. This has enabled the construction of detailed lineages for identified cells of the early embryo. Subsequent experimental work has been concerned with: the role of cytoplasmic determinants, the relative roles of cell ancestry and cell interactions in determining developmental fate, and the control of cell cycle in embryonic cells. Recently, Helobdella has also been used for molecular genetic studies of development. Highly conserved homeoboxes from Drosophila genes have been used to identify genes in Helobdella that may be important for regulating development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.T., 1973, Embryology and phylogeny in annelids and arthropods, Pergamon Press, Oxford.

    Google Scholar 

  • Astrow, S., Holton, B. and Weisblat, D.A., 1987, Centrifugation redistributes factors determining cleavage patterns in leech embryos, Dev. Biol., 120: 270–283.

    Article  PubMed  CAS  Google Scholar 

  • Balakier, H., and Pedersen, R.A., 1982, Allocation of cells to inner cell mass and trophectoderm lineages in preimplantation mouse embryo, Dev. Biol., 90: 352–362.

    Article  PubMed  CAS  Google Scholar 

  • Bissen, S.T., and Weisblat, D.A., 1987, Early differences between alternate blast cells in leech embryo, J. Neurobiol., 18 (3): 251–269.

    Article  PubMed  CAS  Google Scholar 

  • Bissen, S.T., and Weisblat, D.A., 1989, The durations and compositions of cell cycles in embryos of the leech, Helobdella triserialis, Development, 106: 105–118.

    CAS  Google Scholar 

  • Blackshaw, S.E., 1987, Organisation and development of the peripheral nervous system in annelids, in: “Nervous systems in Invertebrates,” ed M.Ali, NATO-ASI series, Plenum Press, New York.

    Google Scholar 

  • Blackshaw, S.E., 1988, Cell lineages and the development of identified neurones in the leech, in: “The making of the nervous system,” Eds.J.G. Parnavelas, C.D.Stern and R.V.Stirling, Oxford University Press, 22–51.

    Google Scholar 

  • Blackshaw, S.E.,and Warner, A.E., 1976, Low resistance junctions between mesoderm cells during development of trunk muscles, J. Physiol., 255: 209–230.

    Google Scholar 

  • Blair, S.S., 1982, Interactions between mesoderm and ectoderm in segment formation in the embryo of a glossiphoniid leech, Dev. Biol., 89: 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Blair, S.S., 1983, Blastomere ablation and the developmental origin of identified monoamine-containing neurones in the leech, Dev. Biol., 95: 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Blair, S.S., and Weisblat, D.A., 1982, Ectodermal interactions during neurogenesis in the glossiphoniid leech Helobdella triserialis, Dev. Biol., 91: 64–72.

    CAS  Google Scholar 

  • Dalcq, A., and Pasteels, J., 1955, Determination photometrique de 1a teneur relative en DNA des noyaux dans les oeufs en segmentation du rat et de 1a souris, Expl.Cell Res. Suppl., 3: 72–97.

    CAS  Google Scholar 

  • Davidson, E.H., 1976, Gene activity in early development, 3rd Ed.Academic Press Inc.London Ltd.

    Google Scholar 

  • DiNardo, S., Kuner, J., Theis, J., and O’Farrell, P., 1985, Development of embryonic pattern in D. melanogaster as

    Google Scholar 

  • revealed by accumulation of the nuclear engrailed protein, Cell, 43:59–69.

    Google Scholar 

  • Edgar, B.A., and Schubiger, G., 1986, Parameters controlling transcriptional activation during early Drosophila development, Cell, 44: 871–877.

    Article  PubMed  CAS  Google Scholar 

  • Edgar, B.A., and McGhee, J.D., 1988, DNA synthesis and the control of embryonic gene expression in C. elegans, Cell, 53: 589–599.

    CAS  Google Scholar 

  • Fernandez, J., 1980, Embryonic development of the glossiphoniid leech Theromyzon rude: characterisation of developmental stages, Dev. Biol., 76: 245–262.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, J., and O1ea, N., 1982, Embryonic development of glossiphoniid leeches, in: “Developmental biology of freshwater invertebrates,” Eds. F.W.Harrison and R.C.Cowden, Liss, New York, 317–361.

    Google Scholar 

  • Fernandez, J., and Stent, G.S., 1980, Embryonic development of the glossiphoniid leech Theromyzon rude: structure and development of the germinal bands, Dev. Biol., 78: 407–434.

    Article  PubMed  CAS  Google Scholar 

  • Foe, V.E., and Alberts, B.M., 1983, Studies of nuclear and cytoplasmic behaviour during the 5 mitotic cycles that precede gastrulation in Drosophila embryogenesis, J. Cell Sci., 61: 31–70.

    PubMed  CAS  Google Scholar 

  • Fraser, S.E., 1985, Gap junctions and cell interactions during development, TINS, 79: 3–4.

    Google Scholar 

  • Gehring,W.J., 1987, Homeoboxes in the study of development, Science, 236: 1245–1252.

    Article  Google Scholar 

  • Gimlich, R.L., and Braun, J., 1985, Improved fluorescent compounds for tracing cell lineage, Dev. Biol., 109: 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Graham, C.F., and Morgan, R.W., 1966, Changes in the cell cycle during early amphibian development, Dev. Biol., 14: 439–460.

    Article  Google Scholar 

  • Hinegardner, R.T., Rao, B., and Feldman, D.E., 1964, The DNA synthetic period during early development of the sea urchin egg, Exptl. Cell Res., 36: 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Ho, R.K., and Weisblat, D.A., 1987, A provisional epithelium in leech embryo: cellular origins and influence on a developmental equivalence group, Dev. Biol., 120: 520–534.

    Article  PubMed  CAS  Google Scholar 

  • Holton, B., Astrow, S.H., and Weisblat, D.A., 1989, Animal and vegetal teloplasms mix in the early embryo of the leech Helobdella triserialis, Dev. Biol., 131: 182–188.

    CAS  Google Scholar 

  • Kimmel, C.B., and Warga, R.M., 1986, Tissue specific cell lineages originate in the gastrula of the zebrafish, Science, 231: 365–368.

    Article  PubMed  CAS  Google Scholar 

  • Romberg, T., 1981, Engrailed: A gene controlling compartment and segment formation in Drosophila, PNAS 78: 1095–1099.

    Google Scholar 

  • Romberg, T., Siden, I., O’Farrell, P., and Simon, M., 1985, The engrailed locus of Drosophila: In situ localisation of transcripts reveals compartment specific expression, Cell, 40: 45–53.

    Article  Google Scholar 

  • Muller, R.J., and McMahan, U.J., 1976, The shapes of sensory and motor neurones and the distribution of their synapses in ganglia of the leech: a study using intracellular injection of horseradish peroxidase, Proc. R. Soc. B., 194: 481–499.

    Article  CAS  Google Scholar 

  • Nishida, H., and Satoh, N., 1983, Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the 8 cell stage, Dev. Biol., 99: 382–394.

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A.B., 1974, A constriction point for control of normal animal cell proliferation, P.N.A.S., 71: 1286–1290.

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A.B., 1974, A constriction point for control of normal animal cell proliferation, P.N.A.S., 71: 1286–1290.

    Article  PubMed  CAS  Google Scholar 

  • Prescott, D.M., 1976, The cell cycle and the control of cellular reproduction, Adv. Genet, 18: 99–177.

    Article  PubMed  CAS  Google Scholar 

  • Schliep, W., 1914, Die Entwicklung zentrifugierter Eier von Clepsine sexoculata, Zool. Jahrb. Abt. Ontog. Tiere, 37: 236–253.

    Google Scholar 

  • Schliep, W., 1914, Die Entwicklung zentrifugierter Eier von Clepsine sexoculata, Zool. Jahrb. Abt. Ontog. Tiere, 37: 236–253.

    Google Scholar 

  • Shankland, M., and Weisblat, D.A., 1984, Stepwise commitment of blast cell fates during the positional specification of the O and P cell lines in the leech embryo, Dev. Biol., 106: 326–342.

    Article  PubMed  CAS  Google Scholar 

  • Shankland, M., 1987a, Determination of cleavage pattern in embryonic blast cells of the leech, Dev. Biol., 120: 494–498.

    Article  PubMed  CAS  Google Scholar 

  • Shankland,M., 1987b, Differentiation of the O and P cell lines in the embryo of the leech. I. Sequential commitment of blast cell lineages, Dev. Biol., 123: 85–96.

    Article  Google Scholar 

  • Shankland, M., 1987c, Differentiation of the O and P cell lines in the embryo of the leech. II. Genealogical relationship of descendant pattern elements in alternative developmental pathways, Dev. Biol., 123: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Stent, G.S., Weisblat, D.A., Blair, S.S., and Zackson, S.L., 1982, Cell lineage in the development of the leech nervous system, in;“Neuronal Development,” Ed. N. Spitzer, Plenum Press, New York, 1–44. Adv. Physiol., 10:87–123.

    Google Scholar 

  • Van den Bigelaar, J.A.M., 1971, Timing of the phases of the cell cycle during the period of asynchronous division up to the 49-cell stage in Lymnaea, JEEM, 26: 367–391.

    Google Scholar 

  • Warner, A.E., 1984, Physiological approaches to early development, Recent Adv. Physiol., 10: 87–123.

    Google Scholar 

  • Warner, A.E., and Lawrence, P.A., 1982, Permeability of gap junctions at the segmental border in insect epidermis, Cell 28: 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Warner, A.E., and Lawrence, P.A., 1982, Permeability of gap junctions at the segmental border in insect epidermis, Cell 28: 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Weisblat, D.A., 1981, Development of the nervous system. In: “Neurobiology of the leech,” Eds.K.J.Müller, J.G. Nicholls and G.S. Stent, Cold Spring Harbor Publications, New York, 173–196.

    Google Scholar 

  • Weisblat, D.A., Sawyer, R., and Stent, G.S., 1978, Cell lineage analysis by intracellular injection of a tracer enzyme, Science, 202: 1295–1298.

    Article  PubMed  CAS  Google Scholar 

  • Weisblat, D.A., Zackson, S.S., Blair, S.S., and Young, J.D., 1980, Cell lineage analysis by intracellular injection of fluorescent tracers, Science, 209: 1538–1541.

    Article  PubMed  CAS  Google Scholar 

  • Weisblat, D.A., and Shankland, M., 1985, Cell lineage and segmentation in the leech, Phil. Trans. R. Soc. Lond., B. 312: 39–56.

    CAS  Google Scholar 

  • Weisblat, D.A., Price, D.J., and Wedeen, C.J., 1988, Segmentation in leech development, Development 104, Supplement, 161–168.

    Google Scholar 

  • Whitman, C.O., 1878, The embryology of Clepsine, Q. J. Micros. Sci., 18: 215–315.

    Google Scholar 

  • Wordeman, L., 1982, Kinetics of primary blast cell production in the embryo of the leech Helobdella triserialis. Honors Thesis, Department of Molecular Biology, University of California, Berkeley.

    Google Scholar 

  • Zackson, S.L., 1984, Cell lineage, cell-cell interactions and segment formation in the ectoderm of a glossiphoniid leech embryo, Dev. Biol., 104: 143–160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blackshaw, S. (1990). Experimental Embryology In Leeches: Cellular and Molecular Approaches. In: Marthy, HJ. (eds) Experimental Embryology in Aquatic Plants and Animals. NATO ASI Series, vol 195. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3830-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3830-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6709-3

  • Online ISBN: 978-1-4615-3830-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics