Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 195))

Abstract

The study of Spiralian development began about a hundred years ago when Whitman (1878) published a description of the development of the leech, Clepsine marginata. Subsequently, Spiralian development became popular because the developmental fate of each individual blastomere can be determined precisely from the cell lineage. About the turn of the century several extensive papers describing the cell lineages of various molluscs (e.g. Blochmann, 1881, 1883; Kofoid, 1895; Conklin, 1897; Wierzejski 1905) and annelids (e.g. Wilson, 1892; Mead, 1897; Woltereck, 1904) appeared. From these studies it became clear that the general principles of mollusc and annelid development (and to a much lesser degree polyclad development; see Wilson, 1898) are identical. In annelid and mollusc embryos the first, second and third quartets of micromeres contribute to the ectoderm, the micromere of the fourth quartet within the dorsal quadrant is the stem cell for the mesoderm, and the macromeres together with the other micromeres of the fourth quartet form the entoderm. The invariant cleavage pattern as well as the apparant early determination of the blastomeres led to the assumption that the spiralian egg is a developmental mosaic. This means that the determination of blastomeres is governed by qualitative differences in cytoplasmic factors which are localized in specific regions of the ooplasm and correctly distributed by the cleavages. Due to these factors blastomeres would develop and differentiate autonomously. This theory of a strict mosaic development was supported by blastomere isolation experiments (Wilson, 1904a,b). The results of these experiments showed that isolated blastomeres develop as if they were still part of the whole embryo. This was, however, proven for larval cells only. Wilson demonstrated that a presumptive trochoblast cell when reared, became ciliated. Regarding this observation Wilson wrote:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blochmann, F., 1881, Über die Entwicklung der Neritina fluviatilis Müll., Z. Wiss. Zool., 36: 125–174.

    Google Scholar 

  • Blochmann, F., 1883, Beiträge zur Kenntnis der Entwicklung der Gastropoden, Z. Wiss. Zool., 38: 392–410.

    Google Scholar 

  • Conklin, E.G., 1897, The embryology of Crepidula, J. Morphol., 13: 1–226.

    Article  Google Scholar 

  • Costello, D.P., 1945, Experimental studies of germinal localization in Nereis. I. The development of isolated blastomeres, J. Exp. Zool., 100: 19–66.

    Article  Google Scholar 

  • Costello, D.P., 1948, Ooplasmic segregation in relation to differentiation, Ann. N. Y. Acad. Sci., 49: 663–683.

    Article  PubMed  CAS  Google Scholar 

  • Dorresteijn, A.W.C., and Fischer, A., 1988, The process of early development, in: “Microfauna Marina Vol 4: The Ultrastructure of Polychaetae,” W.Westheide, and C.O.Hermans, eds., Gustav Fischer Verlag, Stuttgart-New York, pp 335–352.

    Google Scholar 

  • Dorresteijn, A.W.C., Bornewasser, H., and Fischer, A., 1987, A correlative study of experimentally changed first cleavage and Janus development in the trunk of Platynereis dumerilii (Annelida, Polychaeta), Roux’s Arch. Dev. Biol., 196: 51–58.

    Article  Google Scholar 

  • Groepler, W., 1985, Die Entwicklung bei Pomatoceros triqueter L. (Polychaeta, Serpulidae) vom befruchteten Ei bis zur schwimmenden Blastula, Zool. Beitr. N. F., 29: 157–172.

    Google Scholar 

  • Guerrier, P., 1970, Les caractères de 1a segmentation et 1a détermination de 1a polarité dorsoventrale dans 1e

    Google Scholar 

  • développement de quelques Spiralia. II. Sabellaria alveolata (Annélide polychète), J. Embr. Exp. Morphol., 23: 639–665.

    Google Scholar 

  • Hatt, P., 1932, Essais expérimentaux sur les localisations germinales dans l’oeuf d’une annélide (Sabellaria alveolata L.), Arch. Anat. Micr., 28: 81–98.

    Google Scholar 

  • Hauenschild, C., and Fischer, A., 1969, Platynereis dumerilii. Mikroskopische Anatomie, Fortpflanzung, Entwicklung. Grosses Zoologisches Praktikum 10b. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Henry, J.J., 1986, The role of unequal cleavage and the polar lobe in the segregation of developmental potential during first cleavage in the embryo of Chaetopterus variopedatus, Roux’s Arch. Dev. Biol., 196: 103–116.

    Article  Google Scholar 

  • Jeffery, W.R., 1985, The spatial distribution of maternal mRNA is determined by a cortical cytoskeletal domain in Chaetopterus eggs, Dev. Biol., 110: 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Jeffery, W.R., and Wilson, L.J., 1983, Localization of messenger RNA in the cortex of Chaetopterus eggs and early embryos, J. Embryol. Exp. Morphol., 75: 225–239.

    PubMed  CAS  Google Scholar 

  • Kofoid, C.A., 1895, On the early development of Limax, Bull. Museum Comp. Zool., 27: 35–118.

    Google Scholar 

  • Lillie, F.R., 1902, Differentiation without cleavage in the egg of the annelid Chaetopterus pergamentaceus, W. Roux’s Arch. Entw. Mech., 14:44 7–4 99.

    Google Scholar 

  • Lillie, F.R., 1906, Observations and experiments concerning the elementary phenomena of embryonic development in Chaetopterus, J. Exp. Zool., 3: 153–2 69.

    Google Scholar 

  • Lillie, F.R., 1912, Studies of fertilization in Nereis. III. The morphology of the normal fertilization of Nereis, J. Exp. Zool., 12: 413–427.

    Article  Google Scholar 

  • Mead, A.D., 1897, The early development of marine annelids, J. Morphol., 13: 227–326.

    Article  Google Scholar 

  • Nüsslein-Volhard, C., Frohnhöfer, H.G., and Lehmann, R., 1987, Determination of anteroposterior polarity in Drosophila, Science, 238: 1675–1681.

    Google Scholar 

  • Render, J.A., 1983, The second polar lobe of the Sabellaria cementarium embryo plays an inhibitory role in apical tuft formation, Roux’s Arch. Dev. Biol., 192: 120–129.

    Google Scholar 

  • Sander, K., Gutzeit, H.O., and Jaeckle, H., 1985, Insect embryogenesis: Morphology, physiology, genetical and molecular aspects, in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology. Vol 1. Embryogenesis and Reproduction,” G.A. Kerkut and L.I. Gilbert, eds., Pergamon Press, Oxford, pp 319–385.

    Google Scholar 

  • Spek, J., 1930, Zustandsänderungen der Plasmakolloide bei Befruchtung und Entwicklung des Nereis-Eies, Protoplasma 9: 370–427.

    Article  Google Scholar 

  • Speksnijder, J.E., and Dohmen, M.R., 1983, Local surface modulation correlated with ooplasmic segregation in eggs of Sabellaria alveolata (Annelida, Polychaeta), Roux’s Arch. Dev. Biol., 192: 248–255.

    Google Scholar 

  • Swalla, B.J., Moon, R.T., and Jeffery, W.R., 1985, Developmental significance of a cortical cytoskeletal domain in Chaetopterus eggs, Dev. Biol., 111: 434–450.

    Article  PubMed  CAS  Google Scholar 

  • van den Biggelaar, J.A.M., 1976, Development of dorsoventral polarity preceding the formation of the mesentoblast in Lymnaea stagnalis, Proc. K. Ned. Akad. Wet, C 79: 112–126.

    Google Scholar 

  • van den Biggelaar, J.A.M., 1977, Development of dorsoventral polarity and mesentoblast determination in Patella vulgata, J. Morphol., 154: 157–186.

    Article  Google Scholar 

  • von Drasche, R.,1884, Beiträge zur Entwicklung der Polychaeten. I. Entwicklung von Pomatoceros triqueter L., published privately, Vienna, pp 1–10.

    Google Scholar 

  • Whitman, C.O., 1878, The embryology of Clepsine, Quart. J. Micr. Sci., 18: 215–315.

    Google Scholar 

  • Wierzejski, A., 1905, Embryologie von Physa fontinalis L., Z. Wiss. Zool., 83: 502–706.

    Google Scholar 

  • Wilson, E.B., 1892, The cell-lineage of Nereis. A contribution

    Chapter  Google Scholar 

  • to the cytogeny of the annelid body, J. Morphol., 6:361–480.

    Google Scholar 

  • Wilson, E.B., 1898, Considerations on cell-lineage and ancestral reminiscence, Ann. N. Y. Acad. Sci., 11: 1–27.

    Article  Google Scholar 

  • Wilson, E.B., 1904a, Experimental studies on germinal localization. I. The germ-regions in the egg of Dentalium, J. Exp. Zool., 1: 1–72.

    Article  Google Scholar 

  • Wilson, E.B., 1904b, Experimental studies on germinal localization. II. Experiments on the cleavage-mosaic in Patella and Dentalium, J. Exp. Zool., 1: 197–268.

    Article  Google Scholar 

  • Wilson, E.B., 1925, The Cell in Development and Heredity. Third edition with corrections, The MacMillan Company, New York.

    Google Scholar 

  • Woltereck, R., 1904, Beiträge zur praktischen Analyse der Polygordius — Entwicklung nach dem Nordsee- und dem Mittelmeer-Typus, W. Roux’s Arch. Entw. Mech. Org., 18: 377–403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorresteijn, A.W.C., Kluge, B. (1990). On the Establishment of Polarity in Polychaete Eggs. In: Marthy, HJ. (eds) Experimental Embryology in Aquatic Plants and Animals. NATO ASI Series, vol 195. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3830-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3830-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6709-3

  • Online ISBN: 978-1-4615-3830-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics