Skip to main content

High-Temperature Superconducting Materials

  • Chapter
Electronic Materials

Abstract

Since the discovery of superconductivity in 1911 by the Dutch physicist Kamerlingh Onnes, who first observed this phenomenon in mercury at 4.2 K (-269°C),(l) as shown in Fig. 1, there has been a succession of materials that superconduct at increasingly higher temperatures. Tens of metallic elements and thousands of compounds are now known to exhibit this propety. Until the mid-1980s, the highest recorded superconducting transition temperature was about 23 K (-250°C), in niobium germanate (Nb3Ge). In 1987, however, a new class of materials that superconduct at temperatures above the boiling point of liquid nitrogen (77 K) were discovered. These so-called HiTc materials, which are usually ceramic in nature (i.e., complex polycrystalline metal oxides), may prove to be of considerable technological importance since they offer great potential for a wide range of both novel and existing applications. Although the superconducting mechanism in HiTc compounds is not yet fully understood, their emergence has been heralded as potentially the most significant scientific event since the advent of the transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kamerlingh Onnes, Akad. Wetenschappen (Amsterdam) 14, 113, 818 (1911).

    Google Scholar 

  2. N. W. Ashcraft and N. D. Mermin, Solid State Physics Chap. 34, Holt-Saunders International, New York (1976).

    Google Scholar 

  3. C. Kittel, Introduction to Solid State Physics Chap. 12, Wiley, New York (1976).

    Google Scholar 

  4. A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity Pergamon, New York (1986).

    Google Scholar 

  5. J. Bardeen, L. N. Cooper, and J. R. Schrieffer Phys. Rev. 106, 162, (1957); 108, 1175 (1957).

    Google Scholar 

  6. P. W. Anderson, Science 235, 1196 (1987).

    Article  Google Scholar 

  7. A. S. Alexandrov, Phys. Rev. B 38, 925 (1988).

    Article  Google Scholar 

  8. P. Prelovsek, T. M. Rice, and F. C. Zhang, J. Phys. C. 20, L229 (1988).

    Article  Google Scholar 

  9. J. E. Gavaler, Appl. Phys. Lett. 23, 480 (1973).

    Article  Google Scholar 

  10. J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).

    Article  Google Scholar 

  11. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    Article  Google Scholar 

  12. H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, J. Jpn. Appl. Phys. 27, L209 (1988).

    Article  Google Scholar 

  13. Z. Z. Sheng and A. M. Hermann, Nature 332, 139, 623 (1988).

    Google Scholar 

  14. T. Penney, S. Von Molnar, D. Kaiser, F. Holtzberg, and A. W. Kleinsasser, Phys. Rev. B38, 2918 (1988).

    Article  Google Scholar 

  15. M. F. Crommie, A. Zettl, T. W. Barbee, III, and M. L. Cohen, Phys. Rev. B 37, 9734 (1988).

    Article  Google Scholar 

  16. Y. Lu, Y. F. Yan, H. M. Duan, L. Lu, and L. Li, Phys. Rev. B 39, 729 (1989).

    Article  Google Scholar 

  17. J. Clayhold and N. P. Ong, Phys. Rev. B 38, 7016 (1988).

    Article  Google Scholar 

  18. R. W. Whatmore, D. A. Cardwell, J. W. Cockburn, A. Patel, P. C. Osbond, L. Dorey, C. J. H. Wort, and F. W. Ainger, Physica C 153–155, 790 (1988).

    Article  Google Scholar 

  19. H. Tsuge, S. Matsui, N. Matsukura, Y. Kojima, and Y. Wada, Jpn. AppL Phys. 27, L2237 (1988).

    Article  Google Scholar 

  20. M. Kenai, T. Kawai, M. Kawai, and S. Kawai, Jpn. J. Appl. Phys. 27, L1293 (1988).

    Article  Google Scholar 

  21. C.-A. Chang, C. C. Tsuei, C. C. Chi, and T. R. McGuire, Appl. Phys. Lett. 52, 72 (1987).

    Article  Google Scholar 

  22. E. Forgan, Nature 329, 483 (1987).

    Article  Google Scholar 

  23. D. A. Cardwell, J. W. Cockburn, and R. W. Whatmore, Supercond. Sci. Tech. 2, 132 (1989).

    Article  Google Scholar 

  24. D. A. Cardwell, IEE Rev. Feb, 57 (1989).

    Google Scholar 

  25. C. Zahopoulos, W. L. Kennedy, and S. Sridhar, Appl. Phys. Lett. 52, 2168 (1988).

    Article  Google Scholar 

  26. S. K. Khamas, M. J. Mehler, T. S. M. Maclean, C. E. Gough, N. McN. Alford, and M. A. Harmer, Elec. Lett. 24, 460 (1988).

    Article  Google Scholar 

  27. D. Caplin, Nature 335, 204 (1988).

    Article  Google Scholar 

  28. Y. J. Uemura, V. J. Emery, A. R. Moodenbaugh, M. Suenaga, D. C. Johnston, A. J. Jacobson, J. T. Lewandowski, J. H. Brewer, R. F. Kieft, S. R. Kreitzman, G. M. Luke, T. Riseman, C. E. Stronach, J. R. Kossler, J. R. Kempton, X. H. Yu, D. Opie, and H. E. Schone, Phys. Rev. B 38, 909 (1988).

    Article  Google Scholar 

  29. M. B. Salamon, S. E. Inderhees, J. P. Rice, B. G. Pazol, D. M. Ginsberg, and N. Goldenfield, Phys. Rev. B 38, 885 (1988).

    Article  Google Scholar 

  30. M. Suzuki, Y. Enomoto, K. Moriwaki, and T. Murakami, Jpn. Appl. Phys. 26, L1921 (1987).

    Article  Google Scholar 

  31. P. M. Mankiewich, J. H. Schofield, W. J. Skocpol, R. E. Howard, A. H. Dayema, and E. Good, Appl. Phys. Lett. 51, 1753 (1987).

    Article  Google Scholar 

  32. Y. Hidaka, M. Oda, M. Suzuki, Y. Maeda, Y. Enomoto, and T. Murakami, Jpn. J. Appl. Phys. 27, L538 (1988).

    Article  Google Scholar 

  33. I. K. Gopalakrishnan, A. M. Umarji, J. V. Yakhmi, L. C. Gupta, R. M. Iyer, and R. Vijayaraghavan, Mater. Lett. 5, 165 (1987).

    Article  Google Scholar 

  34. R. J. Cava, R. B. van Dover, B. Batlogg, and E. A. Rietman, Phys. Rev. Lett. 58, 408 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cardwell, D.A. (1991). High-Temperature Superconducting Materials. In: Miller, L.S., Mullin, J.B. (eds) Electronic Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3818-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3818-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6703-1

  • Online ISBN: 978-1-4615-3818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics