Skip to main content

Nonlinear Waveguides

  • Chapter
Electronic Materials

Abstract

The use of monomode optical fibers in optical communications systems is widespread, and their transmission losses at the communications wavelengths of 1.3 and 1.55 µm are now well below 1 dB/km, facilitating the use of very long, high-capacity data links. Optoelectronic components for producing optical signals and converting them back to electronic signals are well established, though technological advancement continues. The existence of optical data links provides strong motivation for developing integrated optical devices capable of manipulating optical signals directly without the need to return to electronics. These devices utilize nonlinear optical effects in guided wave geometries compatible with fiber optic systems, and are capable of performing increasingly complex high-speed signal-processing functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. I. Stegeman and C. T. Seaton, Nonlinear integrated optics, J. Appl. Phys. 58, R57 (1985).

    Article  Google Scholar 

  2. J. Zyss, Nonlinear organic material for integrated optics: A review, J. Molec. Electron. 1, 25 (1985).

    Google Scholar 

  3. R. Schmidt and I. Kaminow, Metal diffused optical waveguides in LiNbO3, Appl. Phys. Lett. 25, 458 (1974).

    Article  Google Scholar 

  4. S. Wang and S. Lin, High speed III-V electro-optic waveguide modulators at A = 1.3 μm, IEEE J. Lightwave Tech. 6, 758 (1988).

    Article  Google Scholar 

  5. S. R. Friberg and P. W. Smith, Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron QE-23, 2089 (1987).

    Article  Google Scholar 

  6. T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, Semiconductor-doped glass ion-exchanged waveguides, Appl. Phys. Lett. 49, 1403 (1986).

    Article  Google Scholar 

  7. M. Erman, P. Jarry, R. Gamonal, P. Autier, J. P. Chane, and P. Frijlink, Mach-Zehnder modulators and optical switches on III-V semiconductors, IEEE J. Lightwave Tech. 6, 837 (1988).

    Article  Google Scholar 

  8. R. M. Fortenberry, G. Assanto, R. Moshrefzadeh, C. T. Seaton, and G. I. Stegeman, Pulsed excitation of nonlinear distributed coupling into zinc oxide optical guides, IEEEJ. Lightwave Tech. 5, 425 (1988).

    Google Scholar 

  9. For examples, M. Thakur, and S. Meyler, Growth of large-scale thin-film single crystals of poly (diacetylenes), Macromolecules 18, 2341, (1985)

    Article  Google Scholar 

  10. H. Itoh, K. Hotta, H. Takara, and K. Sasaki, The growth of 2-methyl-4-nitroaniline single crystalline thin films for phase-matched frequency-doubling, Opt. Commun. 59, 299 (1986).

    Article  Google Scholar 

  11. S. Tomaru, M. Kawachi, and M. Kobayashi, Organic crystals growth of optical channel waveguides, Opt. Commun. 50, 154 (1984).

    Article  Google Scholar 

  12. B. K. Nayer, Nonlinear optical interactions in organic crystal cored fibres, in Nonlinear Properties of Organic and Polymeric Materials, ACS Symposium Services 233, American Chemical Society, Washington, D.C., p. 153 (1983) and references cited therein.

    Google Scholar 

  13. R. H. Tredgold, M. C. J. Young, P. Hodge, and E. Khoshdel, Lightguiding in Langmuir-Blodgett films of performed polymers, Thin Solid Films 151, 441 (1987).

    Article  Google Scholar 

  14. M. J. Goodwin, R. Glenn, and I. Bennion, Organic nonlinear optical waveguides formed by solvent assisted indiffusion, Electron. Lett. 22, 789 (1986).

    Article  Google Scholar 

  15. M. J. Goodwin, C. Edge, C. Trundle, and I. Bennion, Intensity dependent birefringence in nonlinear organic polymer waveguides, J. Opt. Soc. Am. B 5, 419 (1988).

    Article  Google Scholar 

  16. K. D. Singer, J. E. Sohn, and S. J. Lalama, Second harmonic generation in poled polymer films, Appl. Phys. Lett. 49, 248 (1986).

    Article  Google Scholar 

  17. P. J. Duthie and M. J. Wale, Rearrangeably nonblocking 8 × 8 guided wave optical switch, Electron. Lett. 24, 594 (1988).

    Article  Google Scholar 

  18. S. Korotky, G. Eisenstein, R. Tucker, J. Veselka, and G. Raybon, Optical intensity modulation to 40 GHz using a waveguide electro-optic switch, Appl. Phys. Lett. 50, 1631 (1987).

    Article  Google Scholar 

  19. S. K. Korotky, A. Gnauk, B. Kasper, J. Campbell, J. Veselka, J. Talman, and A. McCormick, 8-Gbit/s transmission experiment over 68 km of optical fibre using a Ti: LiNbO3 external modulator, IEEE J Lightwave. Tech. 5, 1180 (1985).

    Google Scholar 

  20. R. Rogener and W. Sohler, Efficient second harmonic generation in Ti: LiNbO3 channel waveguide resonators, J. Opt. Soc. Am. B 5, 267 (1988).

    Article  Google Scholar 

  21. W. Sohler and H. Suche, in Integrated Optics III, (L. D. Hutcheson and D. G. Hall, eds.) Proc. SPIE 408, 163 (1983).

    Google Scholar 

  22. S. Wang, S. Lin, and Y. Houng, GaAs traveling-wave polarization electro-optic waveguide modulator with bandwidth in excess of 20 GHz at 1.3 μm, Appl. Phys. Lett. 51, 83 (1987).

    Article  Google Scholar 

  23. T. Wood, E. Carr, C. Burrus, R. Tucker, T. Chiu, and W. Tsang, High-speed waveguide optical modulator made from GaSb/AIGaSb multiple quantum wells (MQWs), Electron. Lett. 23, 540 (1987).

    Article  Google Scholar 

  24. Y. Kawamura, K. Wakita, Y. Yoshikuru, Y. Itaya, and H. Asahi, Monolithic integration of InGaAsP/InP DFB lasers and InGaAs/InAlAs MQW optical modulators, Electron. Lett. 22, 242 (1986).

    Article  Google Scholar 

  25. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, Third order nonlinear integrated optics, IEEE J. Lightwave Tech. 6, 953 (1988).

    Article  Google Scholar 

  26. A. Gabel, V. W. Delong, C. T. Seaton, and G. I. Stegeman, Efficient degenerate four-wave mixing in an ion exchanged semiconductor-doped glass waveguide, Appl. Phys. Lett. 51, 1682 (1987).

    Article  Google Scholar 

  27. D. J. Williams, ed., Nonlinear Properties of Organic and Polymeric Materials, ACS Symposium Series 233, American Chemical Society, Washington, D.C. (1983).

    Google Scholar 

  28. G. M. Carter, J. V. Hryniewicz, M. K. Thakur, Y. J. Chen, and S. E. Meyler, Nonlinear optical processes in polydiacetylene measured with femtosecond duration pulses, Appl. Phys. Lett. 49, 988 (1986).

    Article  Google Scholar 

  29. C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, and J. D. Valera, Nonlinear distributed waveguide couplers, J. Opt. Soc. Am. A 2, 590 (1985).

    Article  Google Scholar 

  30. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. W. Smith, Femtosecond switching in a dual-core-fiber nonlinear coupler, Opt. Lett. 13, 904 (1988).

    Article  Google Scholar 

  31. M. J. Goodwin, C. J. Rowe, I. Bennion, and C. Trundle, Periodic grating structures in nonlinear optical waveguides, Proceedings of Fourth European Conference on Integrated Optics (Glasgow, Scotland), p. 182 (1987).

    Google Scholar 

  32. P. Li Kam Wa, P. N. Robson, J. P. R. David, G. Hill, P. Mistry, M. A. Pate, and J. S. Roberts, All-optical switching effects in a passive GaAs/GaA1As multiple quantum well waveguide resonator, Electron. Lett. 22, 1129 (1986).

    Article  Google Scholar 

  33. H. Vach, C. T. Seaton, G. I. Stegeman, and I. C. Khoo, Observation of intensity-dependent guided waves, Opt. Lett. 9, 238 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodwin, M.J. (1991). Nonlinear Waveguides. In: Miller, L.S., Mullin, J.B. (eds) Electronic Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3818-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3818-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6703-1

  • Online ISBN: 978-1-4615-3818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics