Skip to main content

Principles of Nonlinear Optical Response

  • Chapter

Abstract

This chapter describes the nature and origins of nonlinear optical response in materials. It aims to provide a general background to materials behavior for optoelectronics and nonlinear optics, except that the important topic of electromagnetic wave propagation in nonlinear materials is not covered. More specific accounts dealing with particular phenomena, materials, and devices are given in other chapters. The following section gives a general phenomenological description of nonlinear response, considering aspects of frequency dependence and symmetry. Next second-harmonic generation and the Pockels effect are treated briefly as examples in order to illustrate how the general description applies to specific cases each with its own specialized notation. After that, the microscopic origins of nonlinear optical response are considered. By understanding these origins, one can begin to design new materials. This is a particularly attractive possibility in molecular materials, as discussed in the final section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Munn, Theory of molecular opto-electronics: From the molecule to the crystal, J. Molec. Electron. 4, 31 - 36 (1988).

    Google Scholar 

  2. H. Jeffreys, Cartesian Tensors, Cambridge U.P., London (1963).

    Google Scholar 

  3. D. A. Kleinman, Nonlinear dielectric polarization in optical media, Phys. Rev. 126, 1977 - 1979 (1962).

    Article  Google Scholar 

  4. Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).

    Google Scholar 

  5. M. Hurst and R. W. Munn, Theory of molecular opto-electronics. I. Macroscopic and microscopic response, J. Molec. Electron. 2, 35 - 41 (1986).

    Google Scholar 

  6. M. Hurst and R. W. Munn, Theory of molecular opto-electronics. II. Environmental effects on molecular response, J. Molec. Electron. 2, 43 - 47 (1986).

    Google Scholar 

  7. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 - 1939 (1962).

    Article  Google Scholar 

  8. J. Zyss, Nonlinear organic materials for integrated optics, J. Molec. Electron. 1, 25 - 45 (1985).

    Google Scholar 

  9. D. S. Chemla and J. Zyss (eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic, Orlando (1987). 2 Vols.

    Google Scholar 

  10. J. F. Ward, Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory, Rev. Mod. Phys. 37, 1 - 18 (1965).

    Article  Google Scholar 

  11. J. F. Nicoud and R. J. Twieg, Organic EFISH hyperpolarizability data, in Ref. 9, Vol. 2, pp. 255–267.

    Google Scholar 

  12. D. Pugh and J. O. Morley, Molecular hyperpolarizabilities of organic materials, in Ref. 9, Vol. 1, pp. 193–225.

    Google Scholar 

  13. J. F. Nicoud and R. J. Twieg, Design and synthesis of organic compounds for efficient second-harmonic generation, in Ref. 9, Vol. 1, pp. 227–296.

    Google Scholar 

  14. M. Hurst and R. W. Munn, Theory of molecular opto-electronics. VI. Comparisons between nitroanilines, in Organic Materials for Nonlinear Optics(R. A. Hann and D. Bloor, eds), pp. 3–11, Royal Society of Chemistry, London (1989).

    Google Scholar 

  15. M. Hurst and R. W. Munn, Theory of molecular opto-electronics. VIII. Calculations for POM and MAP, in Molecular Electronics—Science and Technology(A. Aviram, ed.), pp. 267–273, Engineering Foundation, New York (1989).

    Google Scholar 

  16. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, Second-order nonlinear optical processes in orientationally ordered materials: Relationship between molecular and macroscopic properties, J. Opt. Soc. Am. B 4, 968 - 976 (1987).

    Article  Google Scholar 

  17. P. Calvert, Polymers that make light work, Nature 337, 408 - 409 (1989).

    Article  Google Scholar 

  18. I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, Second harmonic generation from alternating Langmuir-Blodgett films, Optics Commun. 55, 289–292 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Munn, R.W. (1991). Principles of Nonlinear Optical Response. In: Miller, L.S., Mullin, J.B. (eds) Electronic Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3818-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3818-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6703-1

  • Online ISBN: 978-1-4615-3818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics