Skip to main content

Microstructural and Compositional Characterization of Thin-Film Semiconductor Materials by Transmission Electron Microscopy (TEM)

  • Chapter
  • 1017 Accesses

Abstract

The field of semiconductor devices has been transformed in recent years by the availability of preparative techniques capable of routinely providing materials in thin-film form and of extremely high purity. With advances in the field of metalorganic vapor phase epitaxy (MOVPE), molecular beam epitaxy (MBE), and metalorganic molecular beam epitaxy (MOMBE) has come the need to characterize materials using methods with higher sensitivities and much improved spacial resolution. It is no exaggeration to say that single atoms need to be seen and their influences recorded. These requirements have placed additional demands on characterization techniques. Table 1 summarizes a selection of the important techniques currently available for the chemical, structural, optical, and electrical characterization of epitaxial materials. Most of these can only be used to determine macroscopic (average) properties. Some, such as secondary ion mass spectrometry (SIMS) and the electrical techniques, can be combined with profiling to probe properties as a function of depth normal to the epitaxial layers, but at distances 10 ≲nm (100Å) resolution limits begin to be approached.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals, Krieger, New York (1977).

    Google Scholar 

  2. G. Thomas and M. J. Goringe, Transmission Electron Microscopy of Materials, Wiley, New York (1979).

    Google Scholar 

  3. H. Oppolzer, TEM for support of VLSI technology, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser. No. 76, pp. 461–470, IOP Publishing, Bristol (1985).

    Google Scholar 

  4. H. Oppolzer, H. Cerva, C. Fruth, V. Huber, and S. Schild, TEM studies during development of a 4-megabit D-RAM, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 433–438, IOP Publishing, Bristol (1987).

    Google Scholar 

  5. K. W. Andrews, D. J. Dyson, and S. R. Keown, Interpretation of Electron Diffraction Patterns, Hilger, London (1971).

    Google Scholar 

  6. J. E. Eades, Symmetry determination by convergent beam diffraction, in EUREM ‘88, Inst. Phys. Conf. Ser., No. 93, Vol. 1, pp. 3–12, IOP Publishing, Bristol (1988).

    Google Scholar 

  7. R. C. Ecob, M. P. Shaw, A. J. Porter, and B. Ralph, Small symmetry changes accompanying phase transformations, Phil. Mag. A44(5), 1117 - 1133 (1981).

    Google Scholar 

  8. G. M. Rackham and J. W. Steeds, Convergent beam observations near boundaries and interfaces, in EMAG ‘75, Inst. Phys. Conf. Ser., pp. 457–460, IOP Publishing, Bristol (1975).

    Google Scholar 

  9. N. S. Blom and F. W. Schapink, Computer simulation of convergent beam electron diffraction patterns from bi-crystal, J. Appl. Crystallogr. 18, 126 - 130 (1985).

    Article  Google Scholar 

  10. A. C. Wright, unpublished results.

    Google Scholar 

  11. Y. P. Lin, D. M. Bird, and R. Vincent, Errors and correction term for HOLZ line simulations, Ultramicroscopy 27, 233 - 240 (1989).

    Article  Google Scholar 

  12. E. G. Bithell and W. M. Stobbs, The simulation of HOLZ line positions in electron diffraction patterns, J. Microsc. 153(1), 39 - 49 (1989).

    Article  Google Scholar 

  13. J. M. Gibson, R. Hull, J. C. Bean, and M. M. J. Treacy, Elastic relaxation in transmission electron microscopy of strained-layer superlattices, Appl. Phys. Leu. 46(7), 649 - 651 (1985).

    Article  Google Scholar 

  14. J. C. H. Spence, Experimental High Resolution Electron Microscopy, Clarendon Press, Oxford (1981).

    Google Scholar 

  15. P. G. Self, M. A. O’Keefe, P. R. Buseck, and A. E. C. Spargo, Practical computation of amplitudes and phases in electron diffraction, Ultramicroscopy 11, 35 - 52 (1983).

    Article  Google Scholar 

  16. P. D. Brown, A. P. C. Jones, G. J. Russel, J. Woods, B. Cockayne, and P. J. Wright, In-plane anisotropy of the defect distribution in ZnSe, ZnS and ZnSe/ZnS epilayers grown onto (001) GaAs by MOCVD, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 123–128, IOP Publishing, Bristol (1987).

    Google Scholar 

  17. L. DiCioccio, E. A. Hewat, A. Million, J. P. Gaillard, and M. Dupuy, High resolution transmission electron microscopy of CdTe-HgTe superlattice cross-sections, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 243–248, IOP Publishing, Bristol (1987).

    Google Scholar 

  18. M. A. O’Keefe, P. R. Buseck, and I. lijima, Nature 274, 322 - 324 (1978).

    Article  Google Scholar 

  19. D. M. Bird and A. G. Wright, Polarity determination from Kikuchi patterns, in EUREM ‘88, Inst. Phys. Conf. Ser., No. 93, Vol. 2, pp. 39–40, TOP Publishing, Bristol (1988).

    Google Scholar 

  20. A. R. Preston and P. Spellward, Polarity determination in GaAs by matching of [110] CBED patterns and simulations, in EUREM ‘88, Inst. Phys. Conf. Ser., No. 93, Vol. 2, pp. 27 and 28, IOP Publishing, Bristol (1988).

    Google Scholar 

  21. J. Tafto and J. C. H. Spence, A simple method for the determination of structure factor phase relationships and crystal polarity using electron diffraction, J. Appl. Crystallogr. 15, 60 - 64 (1982).

    Article  Google Scholar 

  22. A. C. Wright, T. L. Ng, and J. O. Williams, Polarity determination in (110)-oriented GaSb by high-resolution transmission electron microscopy at 300 kV, Phil. Mag. Lett. 57(2), 107 - 111 (1988).

    Article  Google Scholar 

  23. D. J. Smith, R. W. Glaisher, and P. Lu, Surface polarity determination in (110)-oriented compound semiconductors by high resolution electron microscopy, Phil. Mag. Lett. 59(2), 69 - 75 (1989).

    Article  Google Scholar 

  24. W. Stutius and F. A. Ponce, Crystal orientation dependance of the electrical transport and lattice structure of zinc selenide films grown by MOCVD, J. Appl. Phys. 58(4), 1548 - 1553 (1985).

    Article  Google Scholar 

  25. J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1968).

    Google Scholar 

  26. N. Burle-Durbec, B. Pichard, and F. Minari, Interaction of In atoms with partial dislocation cores in GaAs: 0.3% In, Phil. Mag. Lett. 59(3), 121 - 129 (1989).

    Article  Google Scholar 

  27. M. Heggie and R. Jones, Atomic structure of dislocations and kinks in silicon, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 367–374, IOP Publishing, Bristol (1987).

    Google Scholar 

  28. A. Lapiccirella and K. W. Lodge, Dislocation core structure in silicon, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 60, pp. 51–55, IOP Publishing, Bristol (1981).

    Google Scholar 

  29. R. Jones, Reconstructed dislocations in covalently bonded semiconductors, in Microscopy ofSemiconducting Materials, Inst. Phys. Conf. Ser., No. 60, pp. 45–50, IOP Publishing, Bristol (1981).

    Google Scholar 

  30. N. Maung, Ph.D. thesis, Gottingen, F.R.G. (1987).

    Google Scholar 

  31. A. Bourret, Direct observation of impurity decoration in dislocation core, Electron Microsc. 1, 306–307 (1980).

    Google Scholar 

  32. M. H. Loretto and R. E. Smallman, Defect Analysis in Electron Microscopy, Chapman and Hall, London (1975).

    Google Scholar 

  33. A. Bourret, J. Desseaux, and C. D’Anterroches, Defect structure in CZ silicon and germanium studied by high-resolution electron microscopy, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 60, pp. 9–14, IOP Publishing, Bristol (1981).

    Google Scholar 

  34. G. R. Anstis, P. B. Hirsch, C. J. Humphries, J. L. Hutchison, and A. Ourmazd, Lattice images of the 30° partials in silicon, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 60, pp. 15–22 (1981).

    Google Scholar 

  35. J. L. Hutchison, G. R. Anstis, and P. Pirouz, Lattice images of undissociated 60° dislocations in silicon, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., N. 67, pp. 21–26, IOP Publishing, Bristol (1983).

    Google Scholar 

  36. J. L. Hutchison, C. J. Humphries, A. Ourmazd, and P. B. Hirsch, Structure images of dislocations in silicon, Electron Microsc. 1, 304–305 (1980).

    Google Scholar 

  37. A. Olsen and J. C. H. Spence, Distinguishing dissociated glide and shuffle set dislocation by high resolution electron microscopy, Phil. Mag. A43(4), 945 - 965 (1981).

    Google Scholar 

  38. L. C. Qin, D. X. Li, and K. H. Kuo, A HREM study of the defects in ZnS, Phil. Mag. A53(4), 543 - 555 (1986).

    Google Scholar 

  39. R. Kilaas and R. Gronsky, The effect of amorphous surface layers on images of crystals in high resolution transmission electron microscopy, Ultramicroscopy16, 193–202 (1985).

    Article  Google Scholar 

  40. R. W. Glaisher, M. Kuwabara, J. C. H. Spence, and M. J. McKelvy, On the lattice imaging of kinks in wurtzite semiconductors, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 349–354 IOP Publishing, Bristol (1987).

    Google Scholar 

  41. D. Shindo, J. C. H. Spence, H. Alexander, N. Long, and Vanderschaever, Electron Microsc. (Kyoto) 1, 785 (1986).

    Google Scholar 

  42. M. Tanaka and B. Jouffrey, Dissociated dislocations in GaAs observed in high resolution electron microscopy, Phil. Mag. A50(6), 733 - 743 (1984).

    Google Scholar 

  43. D. Gerthsen, F. A. Ponce, and G. B. Anderson, High resolution transmission electron microscopy of 60° dislocations in Si-GaAs Phil. Mag. A59 (5), 1045 - 1058 (1989).

    Google Scholar 

  44. F. A. Ponce, T. Yamashita, R. H. Bube, and R. Sinclair, Imaging of defects in cadmium telluride using high resolution transmission electron microscopy, in Defects in Semiconductors, North-Holland, Amsterdam (1981).

    Google Scholar 

  45. R. C. Pond, D. A. Smith, and V. Vitek, Inst. Metals Conf., Jersey (1961).

    Google Scholar 

  46. O. Krivanek, S. Isoda, and K. Kobayashi, Lattice imaging of grain boundary in crystalline Ge, Phil. Mag. 36, 931 (1977).

    Article  Google Scholar 

  47. C. D’Anterroches, G. Silvestre, A. M. Papon, J. J. Bacmann, and A. Bourret, Atomic structure of E =9 grain boundary in germanium, Electron Microsc. 1, 316–317 (1980).

    Google Scholar 

  48. A. Bourret, L. Billard, and M. Petit, HREM determination of the structure of the {211} E =3 twin in Ge, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser. N. 76, pp. 23–28, IOP Publishing, Bristol (1985).

    Google Scholar 

  49. N-H. Cho, C. B. Carter, D. K. Wagner, and S. McKernan, Grain boundaries and APB’s in GaAs, in Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 281–286, IOP Publishing, Bristol (1985).

    Google Scholar 

  50. J. O. Williams and A. C. Wright, High resolution lattice imaging study of twin boundaries in epitaxial films of ZnSe grown by MOVPE, Phil. Mag. A55(1), 99 - 110 (1987).

    Google Scholar 

  51. M. Shiojiri, C. Kaito, S. Sekimoto, and N. Nakamura, Polarity and inversion twins in ZnSe crystals observed by HREM, Phil. Mag. A46(3), 495 - 505 (1982).

    Google Scholar 

  52. D. J. Eaglesham, R. Devenish, R. T. Fan, C. J. Humphries, H. Morkoc, R. R. Bradley, and P. D. Augustus, Defects in MBE and MOCVD-grown GaAs on Si, in, Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 105–110, IOP Publishing, Bristol (1987).

    Google Scholar 

  53. T. S. Kuan and C. A Chang, Electron microscope studies of a Ge-GaAs superlattice grown by MBE, J. Appl. Phys. 58(4), 4408 - 4413 (1984).

    Google Scholar 

  54. T. Y. Tan, H. Foil, and W. Krakow, Intermediate defects in silicon and germanium, in, Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 60, pp. 1–7, IOP Publishing, Bristol (1981).

    Google Scholar 

  55. W. Krakow, T. Y. Tan, and H. Foil, The identification of atomic chain configurations in ion irradiated Si by HREM, in, Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 60, pp. 23–28 IOP Publishing, Bristol (1981).

    Google Scholar 

  56. T. S. Kuan, The imaging of point and line defects in silicon using diffuse scattering, Electron Microsc. 1, 336–337 (1980).

    Google Scholar 

  57. T. S. Kuan, T. F. Kuech, W. I. Wang, and E. L. Wilkie, Long range order in AIx,Ga1-xAs, Appl. Phys. Lett.5151 (1987).

    Article  Google Scholar 

  58. T. Suzuki, A. Gomyo, S. Iijima, K. Kobayahi, S. Kawata, I. Hino, and T. Yuasa, Band-gap energy anomaly and sublattice ordering in GalnP and AlGalnP grown by MOVPE Jp. J. Appl. Phys. 27(11), 2098–2106 (1988).

    Article  Google Scholar 

  59. A. Gomyo, T. Suzuki, S. Iijima, H. Hotta, H. Fujii, S. Kawata, K. Kobayashi, Y. Ueno, and I. Hino, Nonexistence of long range order in Ga0.5 In0.5P epitaxial layers grown on (111)B and (110)GaAs substrates, Jpn. J. Appl. Phys. 27(12), L2370 - L2372 (1988).

    Article  Google Scholar 

  60. A. G. Norman, R. E. Mallard, I. J. Murgatroyd, G. R. Booker, A. H. Moore, and M. D. Scott, TED, TEM, and HREM studies of atomic ordering in AlxIn1-xAs(x ~ 0.5) epitaxial layers grown by OMVPE, in, Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 77–82, IOP Publishing, Bristol (1987).

    Google Scholar 

  61. P. Henoc, A. Izrael, and A. Langier, J. Crystal Growth 51387 (1981).

    Article  Google Scholar 

  62. M. M. J. Treacy, J. M. Gibson, and A. Howie, On elastic relaxation and long wavelength microstructures in spinodally decomposed InxGa1-xAsyP1-y epitaxial layers, Phil. Mag. A51(3), 389 - 417 (1985).

    Google Scholar 

  63. S. Sharan and J. Narayan, Strain relief mechanisms and the nature of dislocations in GaAs/Si heterostructures, J. Appl. Phys. 66(6), 2376 - 2380 (1989).

    Article  Google Scholar 

  64. Y. Suzuki and H. Okamoto, Transmission electron microscope observation of lattice image of AlxGai_„As-AlyGa,_„As superlattices with high contrast, J. Appl. Phys.58 (9), 3456–3462 (1985).

    Article  Google Scholar 

  65. T. Furuta, H. Sakaki, H. Ichinose, Y. Ishida, M. Sone, and M. Onoe, Structural evaluation of GaAs/AIGaAs heterointerfaces by atomic-resolution electron microscopy with clear contrast, Jpn. J. Appl. Phys. 23(5), L265 - 267 (1984).

    Article  Google Scholar 

  66. R. Vincent, D. Cherns, S. J. Bailey, and H. Morkoc, Structure of AIGaAs/GaAs multilayers images in superlattices reflections, Phil. Mag. Lett. 56(1), 1 - 6 (1987).

    Article  Google Scholar 

  67. D. Cherns, G. R. Anstis, J. L. Hutchison, and J. C. H. Spence, Phil. Mag. A46, 849 (1982).

    Google Scholar 

  68. J. M. Gibson, R. T. Tung, C. A. Pimentai, and D. C. Joy, Interfacial atomic structure and Sehottky barrier height, in, Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 76, pp. 173–181, IOP Publishing, Bristol (1985).

    Google Scholar 

  69. D. J. Eaglesham, C. J. Kiely, D. Cherns, and M. Missous, Phil. Mag. A60(2), 161 - 175 (1989).

    Google Scholar 

  70. A. C. Wright, T. L. Ng, J. O. Williams, M. Missous, and E. H. Rhoderick, to be published.

    Google Scholar 

  71. C. J. Humphries, D. M. Maher, H. L. Fraser, and D. J. Eaglesham, Convergent-beam imaging-a transmission electron microscopy technique for investigating small localized distortions in crystals, Phil. Mag. A58(5), 787 - 798 (1988).

    Google Scholar 

  72. A. J. McGibbon, J. N. Chapman, A. G. Cullis, and N. G. Chew, Microanalysis of III-V semiconductor interfaces, EMAG ‘87, Analytical Electron Microscopy Workshop, (G. W. Lorimer, ed.), Inst. Metals, London, pp. 219–222 (1988).

    Google Scholar 

  73. T. L. Ng, M. E. Pemble, J. O. Williams, A. C. Wright, and Z. Zainal, The preparation of plan-view TEM samples of ZnSe epilayers on GaAs(100) substrates by selective photoelectrochemical etching, J. Microsc. 150(1), 31 - 40 (1988).

    Article  Google Scholar 

  74. A. K. Petford-Long and A. J. Long, Electron energy loss spectroscopy applied to III-V semiconductor quantum-well structures; correlated with atomic resolution imaging, EMAG ‘87, Analytical Electron Microscopy Workshop, (G. W. Lorimer, ed.), Inst. Metals, London, pp. 201–204 (1988).

    Google Scholar 

  75. A. C. Wright unpublished results.

    Google Scholar 

  76. P. M. Petroff, J. Vac. Sci. Technol. 14, 974 (1977).

    Article  Google Scholar 

  77. C. S. Baxter, W. M. Stobbs, K. J. Monserrat, and J. N. Tothill, Anomalous intensity in dark field images of (Ga, In)As/GaAs multilayers, EMAG ‘87, Analytical Electron Microscopy Workshop, (G. W. Lorimer, ed.) Inst. Metals, London, pp. 209–212 (1988).

    Google Scholar 

  78. E. G. Bithell and W. M. Stobbs, Composition determination in the GaAs/(Al, Ga)As system using contrast in dark field transmission electron microscope images, Phil. Mag.A60 (1), 39–62 (1989).

    Google Scholar 

  79. F. M. Ross, E. G. Britton, and W. M. Stobbs, Application of Fresnel fringe contrast analysis to the measurement of composition profiles in GaAs/(AI, Ga)As heterostructures, EMAG ‘87, Analytical Electron Microscopy Workshop, (G. W. Lorimer, ed.), Inst. Metals, London, pp. 205–208 (1988).

    Google Scholar 

  80. H. Kakibayashi and F. Nagata, Composition dependence of equal thickness fringes in an electron microscope image of GaAs/Al Ga,_„As multilayer structures, Jpn. J. Appl. Phys. 24(12), L905 - L907 (1985).

    Article  Google Scholar 

  81. H. Kakibayashi and F. Nagata, Simulation studies of a composition analysis by thickness fringe (CAT) in an electron microscope image of GaAs/AlxGa1-xAs superstructure, Jpn. J. Appl. Phys. 25(11), 1644 - 1649 (1986).

    Article  Google Scholar 

  82. A. F. de Jong and K. T. F. Janssen, Compositional analysis of Alx Ga1-xAs layers with the thickness fringe method on calibrated samples, in, EUREM ‘88, Inst. Phys. Conf. Ser., No. 93, Vol. 2, pp. 153–154, IOP Publishing, Bristol (1988).

    Google Scholar 

  83. C. J. C. Hetherington, D. J. Eaglesham, C. J. Humphries, and G. J. Tatlock, TEM compositional microanalysis in III-V alloys, in, Microscopy of Semiconducting Materials, Inst. Phys. Conf. Ser., No. 87, pp. 655–658, IOP Publishing, Bristol (1987).

    Google Scholar 

  84. A. Olsen, J. C. H. Spence, and P. Petroff, Compositional analysis of III-V interface lattice images, 38th EMSA meeting, pp. 318–319.

    Google Scholar 

  85. A. C. Wright and J. O. Williams, Structural evaluation of hetero-epitaxial interfaces by high resolution transmission electron microscopy, Mater. Lett. 3(3), 80 - 88 (Jan. 1985).

    Article  Google Scholar 

  86. T. S. Kuan, W. I. Wang, and E. L. Wilkie, Electron diffraction studies of atomic abruptness of Alx Ga1-xAs/GaAs interfaces, EUREM ‘84, Budapest, pp. 113–118 (August (1984).

    Google Scholar 

  87. K. Honda, A. Ohsawa, and N. Toyokura, Silicon surface roughness—Structural observation by reflection electron microscopy, Appl. Phys. Lett. 48(12), 770 - 781 (1986).

    Article  Google Scholar 

  88. K. Yagi, Reflection electron microscopy, J. Appl. Crystallogr. 20, 147 - 160 (1987).

    Article  Google Scholar 

  89. R. W. Glaisher, Personal communication; work being carried out at Arizona State University.

    Google Scholar 

  90. A. Ourmazd, in, Defects in Semiconductors(H. J. Bardeleben, ed.) Vols. 10–12 of Materials Science Forum, pp. 735 ff., Trans. Tech. Pub., Switzerland (1986).

    Google Scholar 

  91. N. G. Chew and A. G. Cullis, The preparation of transmission electron microscope specimens from compound semiconductors by ion milling, Ultramicroscopy 23(2), 175 - 198 (1987).

    Article  Google Scholar 

  92. J. C. Bravman and R. Sinclair, The preparation of cross-section specimens for transmission electron microscopy, J. Electron Microsc. Tech. 1, 53 - 61 (1984).

    Article  Google Scholar 

  93. N. G. Chew and A. G. Cullis, TEM specimen preparation for semiconductors using iodine ion milling, in, EMAG ‘85, Inst. Phys. Conf. Ser., No. 78,10P Publishing, Bristol (1985).

    Google Scholar 

  94. G. Wagner, A. Dreilich, and E. Butter, Chemical thinning of III-V compound semiconductors for transmission electron microscopy, J. Matter. Sci. 23, 2761 - 2767 (1988).

    Article  Google Scholar 

  95. S. N. G. Chu and T. T. Sheng, TEM cross section sample preparation technique for III-V compound semiconductor device materials by chemical etching, J. Electrochem. Soc. 11, 2663 - 2666 (Nov. 1984).

    Article  Google Scholar 

  96. R. J. Graham, A high-yield method for the preparation of cleaved wedge specimens through semiconductor devices, Ultramicroscopy 27, 329 - 332 (1989).

    Article  Google Scholar 

  97. S. B. Newcomb, C. B. Boothroyd, and W. M. Stobbs, Specimen preparation methods for the examination of surfaces and interfaces in the transmission electron microscope, J. Microsc. 140(2), 195 - 207 (1985).

    Article  Google Scholar 

  98. S. B. Newcomb, C. S. Baxter, and E. G. Bithell, The preparation of cross-sectional TEM specimens, in, EUREM ‘88, Inst. Phys. Conf. Ser., No. 93, Vol. 1,10P Publishing, Bristol (1988).

    Google Scholar 

  99. A. Garulli, A. Armigliato, and M. Finetti, A preparation technique for TEM cross-sections of test structures with reduced feature size, Ultramicroscopy 26, 295 - 300 (1988).

    Article  Google Scholar 

  100. T. L. Ng, A. C. Wright, and J. O. Williams, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wright, A.C., Williams, J.O. (1991). Microstructural and Compositional Characterization of Thin-Film Semiconductor Materials by Transmission Electron Microscopy (TEM). In: Miller, L.S., Mullin, J.B. (eds) Electronic Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3818-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3818-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6703-1

  • Online ISBN: 978-1-4615-3818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics