Skip to main content

The Coupling Between Phason and Soft Modes Near the Smectic C* to Smectic a Phase Transition

  • Chapter
Geometry and Thermodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 229))

  • 239 Accesses

Abstract

In condensed matter physics incommensurate phases can occur, if a symmetry of the underlying Hamiltonian is spontaneously broken more than once. The usual situation in incommensurate crystalline systems is that translational symmetry in one direction is broken twice due to the occurence of the periodical order of two different kinds of atoms or ions with different wavelengths. In a truly incommensurate phase the two wavelengths are incommensurate, there is no interaction energy between the two kinds of atoms and the relative motion is described by an acoustic-like excitation (phason). In a commensurate phase, where the ratio of the two wavelengths is rational, there is an interaction energy and the relative motion is optic-like (phason with gap). The transition between these two situations is the commensurate-incommensurate phase transition. In the following we will discuss incommensurate situations in liquid crystal systems and their similarities and differences compared to the usual crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.J. Benattar, F, Moussa, and M. Lambert, J.Chim.Phys. 80, 99 (1983)

    CAS  Google Scholar 

  2. R.J. Birgeneau and J.D. Litster, J.PhysiqueLett. 39, 399 (1978)

    Article  CAS  Google Scholar 

  3. D.R. Nelson and B.I. Halperin, Phys.Rev. B21, 5312 (1980)

    Google Scholar 

  4. H. Pleiner and H.R. Brand, Phys.Rev. A29, 911 (1984)

    Google Scholar 

  5. H. Pleiner, Mol.Cryst.Liq.Cryst. 114, 103 (1984)

    Article  CAS  Google Scholar 

  6. G.S. Smith, E.B. Sirota, C.R. Safinya, and N.A. Clark, Phys.Rev.Lett. 60, 813 (1988)

    Article  CAS  Google Scholar 

  7. P.G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1975)

    Google Scholar 

  8. R.B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, J.Phys.(France) 36, 69 (1975).

    Article  Google Scholar 

  9. H.R. Brand and H. Pleiner, J.Phys.(France) 45, 563 (1984)

    Article  CAS  Google Scholar 

  10. H. Brand and P. Bak, Phys.Rev. A27, 1062 (1983)

    Google Scholar 

  11. L. Musevic, B. Zeks, R. Blinc, L. Jansen, A. Seppen, and P. Wyder, Ferroelectrics 58, 71 (1984)

    Article  CAS  Google Scholar 

  12. H. Pleiner and H.R. Brand, J.Phys.(France) 50, 851 (1989)

    Article  CAS  Google Scholar 

  13. I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).

    Google Scholar 

  14. H. Pleiner, in Incommensurate Crystals, Liquid Crystals, and Quasi-Crystals eds. J.F. Scott and N.A. Clark, Plenum New York, p. 241 (1987)

    Chapter  Google Scholar 

  15. H.R. Brand and H. Pleiner, Mol.Cryst.Liq.Cryst.Lett. 5, 53 (1987)

    CAS  Google Scholar 

  16. J. Prost, Ferroelectrics 84, 261 (1988)

    Article  Google Scholar 

  17. C.C. Huang and J.M. Viner, Phys.Rev. A25, 3385 (1982)

    Google Scholar 

  18. E.P. Pozhidayev, L.M. Blinov, L.A. Beresnev, and V.V. Belyayev, Mol.Cryst. Liq.Cryst. 124, 359 (1985)

    Article  Google Scholar 

  19. K. Skarp, Ferroelectrics 84,119 (1988)

    Article  Google Scholar 

  20. T. Carlsson, B. Zeks, C. Filipic, and A. Levstik, ibid. 223 (1988)

    Google Scholar 

  21. G. Andersson, I. Dahl, W. Kuczynski, S.T. Lagerwall, K. Skarp, and B. Stibler, ibid. 285 (1988)

    Google Scholar 

  22. R. Blinc and B. Zeks, Phys.Rev. A18, 740 (1987)

    Google Scholar 

  23. E.P. Pozidaev, M.A. Osipov, V.G. Chigrinov, V.A. Baikalov, L.M. Blinov, and L.A. Beresnev, Sov.-Phys. JETP 67, 283 (1988)

    Google Scholar 

  24. H.R. Brand and H. Pleiner, submitted for publication

    Google Scholar 

  25. J.R. Lalanne, J. Burchert, C. Destrade, H.T. Nguyen, and J.P. Marcerou, Phys.Rev.Lett. 62, 3046 (1989)

    Article  CAS  Google Scholar 

  26. P.G. de Gennes, Mol.Cryst.Liq.Cryst. 12, 193 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pleiner, H., Brand, H.R. (1990). The Coupling Between Phason and Soft Modes Near the Smectic C* to Smectic a Phase Transition. In: Tolédano, JC. (eds) Geometry and Thermodynamics. NATO ASI Series, vol 229. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3816-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3816-5_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6702-4

  • Online ISBN: 978-1-4615-3816-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics