Skip to main content

Mutually Interacting Quantum Fields in Curved Space-Times: The Outcome of Physical Processes

  • Chapter
Quantum Mechanics in Curved Space-Time

Part of the book series: NATO ASI Series ((NSSB,volume 230))

  • 303 Accesses

Abstract

During the last years many efforts have been made to study quantum field theory in given unquantized space-times. This external field approach for the influence of classical gravitational fields is generally regarded as some sort of semi-classical approximation to a full quantum theory of gravity. It is assumed that characteristic physical traits which show up in this approximation will be at least heuristically important for the construction of the full theory. Furthermore the approximation has its own domain of application during the very early stages of the universe and outside black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audretsch, J., 1979, Cosmological particle creation as above-barrier reflection: approximation method and applications, J. Phys. A.; Math. Gen., 12:1189.

    Article  MathSciNet  ADS  Google Scholar 

  • Audretsch, J., and Spangehl, P., 1985, Mutually interacting quantum fields in an expanding universe: decay of a massive particle, Class. Quantum Gray., 2:733.

    Article  MathSciNet  ADS  Google Scholar 

  • Audretsch, J. and Spangehl, P., 1986, Gravitational amplification and attenuation as part of the mutual interaction of quantum fields in curved space-times, Phys. Rev. D, 33:997.

    Article  MathSciNet  ADS  Google Scholar 

  • Audretsch, J. and Spangehl, P., 1987, Improved concepts for the discussion of mutually interacting quantum fields in Robertson-Walker universes, Phys. Rev. D, 35:2365.

    Article  MathSciNet  ADS  Google Scholar 

  • Audretsch, J., Rüger, A., and Spangehl, P., 1987, Decay of massive particles in Robertson-Walker universes with statically bounded expansion laws, Class. Quantum Grav., 4:975.

    Article  ADS  Google Scholar 

  • Audretsch, J., 1988, On the optical theorem in curved space-time quantum field theory, lectures given at the colloquium in Les Treilles, July 1988 (will appear in Int. J. Theor. Phys.).

    Google Scholar 

  • Audretsch, J., 1989, Applications of the curved space-time optical theorem, manuscript University of Konstanz.

    Google Scholar 

  • Birrell, N.D., and Davies, P.C.W., 1978, Massless Thirring model in curved space: Thermal states and conformai anomaly, Phys. Rev. D, 18:4408.

    Article  ADS  Google Scholar 

  • Birrell, N.D., and Ford, L.H., 1979, Self-interacting quantized fields and particle creation in Robertson-Walker universes, Ann. Phys., 122:1.

    Article  MathSciNet  ADS  Google Scholar 

  • Birrell, N.D., Davies, P.C.W., and Ford, L.H., 1980, Effects of field interactions upon particle creation in Robertson-Walker universes, J. Phys. A.: Math. Gen., 13:961.

    Article  MathSciNet  ADS  Google Scholar 

  • Birrell, N.D., 1981, Interacting quantum field theory in curved space-time, in,: “Quantum Gravity 2”, C.J. Isham, R. Penrose and D.W. Sciama, eds., Clarendon, Oxford.

    Google Scholar 

  • Birrell, N.D., and Davies, P.C.W., 1982, “Quantum Fields in Curved Space”, CUP, Cambridge.

    Book  MATH  Google Scholar 

  • Davies, P.C.W. and Fulling, S.A., 1977, Radiation from moving mirrors and from black holes, Proc. R. Soc. London A, 350:23

    Google Scholar 

  • Ford, L.H., 1982, Particle decay and CPT non-invariance in cosmology, Nucl. Phys. B, 204:35.

    Article  ADS  Google Scholar 

  • Ford, L.H., 1984, Aspects of interacting quantum field theory in curved space-time: renormalization and symmetry breaking, in.: “Quantum theory of gravity”, S.M. Christensen, ed., Hilger, Bristol.

    Google Scholar 

  • Ford, L.H., 1988, Recent advances in quantum field theory in curved spacetime, in: Highlights in gravitation and cosmology, B.R. Iyer, A. Kembhavi, J.V. Narlikar, C.V. Vishveshwara, eds. CUP, Cambridge.

    Google Scholar 

  • Friedman, J.A., 1989, Particle creation in inhomogenuous space-times, Phys. Rev. D, 39:389.

    Article  ADS  Google Scholar 

  • Gibbons, G.W. and Perry, M.J., 1978, Black holes and thermal Green Functions, Prod. R. Soc. London A, 358:467.

    Article  MathSciNet  ADS  Google Scholar 

  • Leahy, D.A. and Unruh, W.G., 1983, Effects of a 4 interaction on black-hole evaporation in two dimensions, Phys. Rev. D, 28:694.

    Article  MathSciNet  ADS  Google Scholar 

  • Lotze, K.H., 1985a, Effects of the electromagnetic interaction upon particle creation in Robertson-Walker universes: I. A general framework for the calculation of particle creation, Class. Quantum Grav., 2:351.

    Article  MathSciNet  ADS  Google Scholar 

  • Lotze, K.H., 1985b, Effects of the electromagnetic interaction upon particle creation in Robertson-Walker universes: II. A soluble example, Class. Quantum Grav., 2:363.

    Article  MathSciNet  ADS  Google Scholar 

  • Lotze, K.H., 1987, Particle decay and violation of CPT invariance in expanding universes: the °-2 model, Class. Quantum Grav., 4:1437.

    Article  ADS  Google Scholar 

  • Lotze, K.H., 1988, Emission of a photon by an electron in Robertson-Walker universes, Class. Quantum Grav., 5:595.

    Article  MathSciNet  ADS  Google Scholar 

  • Lotze, K.H., 1989, Pair creation by a photon and the time-reversed process in a Robertson-Walker universe with time-symmetric expansion, Nuclear Phys. B, 312:673.

    Article  ADS  Google Scholar 

  • Panangaden, P. and Wald, R.M., 1977, Probability distribution for radiation from a black hole in the presence of incoming radiation, Phvs. Rev. D, 16:929.

    Article  ADS  Google Scholar 

  • Papastamatiou, N.J., and Parker, L., 1979, Asymmetric creation of matter and antimatter in the expanding universe, Phys. Rev.D, 19:2283.

    Article  MathSciNet  ADS  Google Scholar 

  • Parker, L., 1969, Quantized fields and particle creation in expanding universes I, Phvs. Rev., 183:1057.

    Article  ADS  MATH  Google Scholar 

  • Parker, L., 1971, Quantized fields and particle creation in expanding universes II, Phys. Rev. D, 3:346.

    Article  ADS  Google Scholar 

  • Unruh, W.G., and Weiss, N., 1984, Acceleration radiation in interacting field theories, Phvs. Rev. D, 29:1656.

    Article  MathSciNet  ADS  Google Scholar 

  • Wald, R.M., 1976, Stimulated-emission effects of particle creation near black holes, Phys. Rev. D, 13:3176.

    Article  ADS  Google Scholar 

  • Wald, R.M., 1979, Existence of the S-matrix in quantum field theory in curved space-time, Ann. Phys., 118:490.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Audretsch, J. (1990). Mutually Interacting Quantum Fields in Curved Space-Times: The Outcome of Physical Processes. In: Audretsch, J., de Sabbata, V. (eds) Quantum Mechanics in Curved Space-Time. NATO ASI Series, vol 230. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3814-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3814-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6701-7

  • Online ISBN: 978-1-4615-3814-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics