Skip to main content

Vacuum States in Spacetimes with Killing Horizons

  • Chapter
Quantum Mechanics in Curved Space-Time

Part of the book series: NATO ASI Series ((NSSB,volume 230))

Abstract

Soon after the discovery by Hawking in 1974 that a black hole formed by gravitational collapse will radiate a thermal distribution of field quanta, a number of authors showed that, in particular spacetimes, when a quantum field is in a certain “natural vacuum state,” then appropriate observers “see” a thermal distribution of particles. For the ordinary vacuum state of Minkowski spacetime, Unruh (1976) obtained such a result for accelerating observers. In extended Schwarzschild spacetime, Hartle and Hawking (1976) and Israel (1976) defined a natural vacuum state (the “Hartle-Hawking vacuum”), which is a thermal state for a static observer. Similarly, for de Sitter spacetime, Gibbons and Hawking (1977) defined the “Euclidean vacuum state” and showed that it has thermal properties for any inertial (geodesic) observer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashtekar, A., and Magnon, A., 1975, Quantum fields in curved space-times, Proc. Roy. Soc. Lond., A346:375.

    MathSciNet  ADS  Google Scholar 

  • Choquet-Bruhat, Y., 1968, Hyperbolic partial differential equations on a manifold, in: “Battelle Rencontres,” C. M. DeWitt and J. A. Wheeler, eds., Benjamin, New York.

    Google Scholar 

  • Fulling, S. A., Narcowich, F. J. and Wald, R. M., 1981, Singularity structure of the two-point function in quantum field theory in curved spacetime. II, Ann. Phys., 136:243.

    MathSciNet  Google Scholar 

  • Geroch, R. P., 1970, Domain of dependence, J. Math. Phys., 11:437.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gibbons, G.W., and Hawking, S. W., 1977, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev., D15:2738.

    MathSciNet  ADS  Google Scholar 

  • Hartle, J. B., and Hawking, S. W., 1976, Path-integral derivation of black hole radiance, Phys. Rev. D13:2188.

    ADS  Google Scholar 

  • Hawking, S. W., and Ellis, G. F. R., 1973, “The Large Scale Structure of Spacetime,” Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Israel, W., 1976, Thermo-field dynamics of black holes, Phys. Lett., 57A:107.

    MathSciNet  ADS  Google Scholar 

  • Kay, B. S., 1978, Linear spin-zero quantum fields in external gravitational and scalar fields, Commun. Math. Phys., 62:55.

    Article  MathSciNet  ADS  Google Scholar 

  • Kay, B. S., 1985, The double-wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes, Commun. Math, Phys., 100:57.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kay, B. S., and Wald, R. M., 1989, Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasi-free states on spacetimes with a bifurcate Killing horizon, to be published.

    Google Scholar 

  • Reed, M., and Simon, B., 1972, “Methods of Modern Mathematical Physics, Vol. I: Functional Analysis,” Academic Press, New York.

    Google Scholar 

  • Simon, B., 1972, Topics in functional analysis, in “Mathematics of Contemporary Physics,” R. F. Streater, ed., Academic Press, New York.

    Google Scholar 

  • Treves, F., 1975, “Basic Linear Partial Differential Equations,” Academic Press, New York.

    MATH  Google Scholar 

  • Unruh, W. G., 1976, Notes on black hole evaporation, Phys. Rev., D14: 870.

    ADS  Google Scholar 

  • Unruh, W. G., and Wald, R. M., 1984, What happens when an accelerating observer detects a Rindler particle, Phys. Rev., D29:1047.

    ADS  Google Scholar 

  • Wald, R. M., 1977, The back reaction effect in particle creation in curved spacetime, Commun. Math. Phys., 54:1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wald, R. M., 1978, Trace anomaly of a conformally invariant quantum field in curved spacetime, Phys. Rev., D17:1477.

    MathSciNet  ADS  Google Scholar 

  • Wald, R. M., 1979, Existence of the S-matrix in quantum field theory in curved spacetime, Commun. Math, Phys., 70:221.

    Article  MathSciNet  ADS  Google Scholar 

  • Wald, R. M., 1974, “General Relativity,” University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wald, R.M. (1990). Vacuum States in Spacetimes with Killing Horizons. In: Audretsch, J., de Sabbata, V. (eds) Quantum Mechanics in Curved Space-Time. NATO ASI Series, vol 230. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3814-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3814-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6701-7

  • Online ISBN: 978-1-4615-3814-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics