Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 230))

Abstract

At first we derive a field equation by means of essentially geometry free demands, that is, by means of a Cauchy-problem, superposition principle, finite propagation speed and a conservation law. These requirements characterise a symmetric hyperbolic system of partial differential equations of first order.

In what follows, the field equation will define the geometry of space-time (in the same way as light rays and point particles define ‘their’ geometry, cf. Ehlers, Pirani and Schild (1972)). A general discussion of the derived field equation leads to a metrical structure of Finslerian type, to the propagation of helicity states, to a path structure and to the propagation of spin states. We thereby investigate the concept of a generalised Clifford-algebra.

Specialisation to two light cones, two helicity and spin states and the requirement that there is at least one time-like group velocity, then leads to the usual Dirac equation which defines as its geometry a Riemann-Cartan spacetime with axial torsion only and interaction with the Maxwell field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, S.I. (1987): Quantitative measures of geometric and topological structure as generated by dynamics, Physica Scripta 35 225

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Audretsch, J. (1981): Trajectories and Spin Motion of Massive Spin 1/2 Particles in Gravitational Fields, J. Phys A Math. Gen. 14 41

    Google Scholar 

  • Audretsch, J. (1981a): Dirac Electron in Space-Time with Torsion: Spinor Propagation, Spin Precession and Non-Geodesic Motion, Phys. Rev D 24 1470.

    MathSciNet  ADS  Google Scholar 

  • Audretsch, J. (1983): The Riemannian Structure of Space-Time as a Consequence of Quantum Mechanics, Phys. Rev. D 27, 2872.

    MathSciNet  ADS  Google Scholar 

  • Audretsch, J.; Gähler, F.; Straumann, N. (1984): Wave Fields in Weyl-Space and Conditions for the Existence of a Preferred Pseudo-Riemannian Structure, Comm. Math. Phys. 95 41

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Audretsch, J.; Lämmerzahl, C. (1988): Constructive Axiomatic Approach to Space-Time Torsion, Class. Quantum Grav. 5 1285

    Article  ADS  MATH  Google Scholar 

  • Baekler, P.; Hehl, F.W.; Mielke, E. (1986): Nonmetricity and Torsion: Facts and Fancies in Gauge Approaches to Gravity, in Ruffini, R. (Hrsgb.): Proceedings of the 4th Marcel Grossmann Meeting on General Relativity, Elsèvier, Amsterdam.

    Google Scholar 

  • Bargmann, V.; Michel, L.; Telegdi, V.L. (1959): Precession of the Polarisation of Particles Moving in a Homogeneous Electromagnetic Field, Phys. Rev. Lett. 2 435

    Article  ADS  Google Scholar 

  • Bleyer, U. (1988): Eine nicht-Lorentz-invariante Verallgemeinerung der Dirac-Gleichung: Begründungen und Konsequenzen, Dissertation B, Akad. d. Wiss. DDR, Potsdam.

    Google Scholar 

  • Bleyer, U.; Liebscher, D.-E. (1986): Induced causality, Astron. Nachr. 307 267

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bleyer, U.; Liebscher, D.-E. (1987): Quantum mechanical consequences of pregeometry, Preprint. Potsdam (will appear in: Proceedings of the IVth Seminar on Quantum Gravity, Moscow 1987, World Scientific).

    Google Scholar 

  • Bhabha, H.J. (1949): On the Postulational Basis of the Theory of Elemtary Particles, Rev. Mod. Phys. 21 451.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Carathéodory, C. (1956): Variationsrechnung und Partielle Differentialgleichungen erster Ordnung, B.G. Teubner, Leipzig

    MATH  Google Scholar 

  • Castagnino, M. (1971): The Riemannian Structure of Space-Time as a Consequence of a Measurement Method, J. Math. Phys. 12 2203.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Childs, L. N. (1978): Linearising of n-ic Forms and Generalized Clifford Algebras, Linear and Multilinear Algebra 5 267.

    Article  MathSciNet  MATH  Google Scholar 

  • Courant, R; Hilbert, D. (1962): Methods of Mathematical Phystcs, Vol. II, Interscience Publishers, New York.

    Google Scholar 

  • Dencker, N. (1982): On the Propagation of Polarization Sets for Systems of Real Principal Type, J. Functional Analysis, 46 351.

    Article  MathSciNet  MATH  Google Scholar 

  • Dieudonné, J. (1971): Èlements d’Analyse, Gauthier-Villars, Paris.

    MATH  Google Scholar 

  • Duffin, R. J. (1938): On the Characteristic Matrices of Covariant Systems, Phys. Rev. 54 1114.

    Article  ADS  Google Scholar 

  • Ehlers, J.; Pirani, F.A.E.; Schild, A. (1972): The Geometry of Free Fall and Light Propagation, in: L. O’Raifeartaigh (ed.): General Relativity, Papers in Honour of J.L. Synge, Clarendon Press, Oxford.

    Google Scholar 

  • Ehlers, J. (1973): Survey of General Relativity Theory, in Israel, W. (ed.): Relativity, Astrophysics and Cosmology, D. Reidel, Dordrecht.

    Google Scholar 

  • Fisher, A.E.; Marsden, J.F. (1979) The Initial Value Problem and the Dynamical Formulation of General Relativity, in S.W. Hawking, W. Israel (ed.): General Relativity, an Einstein centennary survey, Cambridge Univ. Press.

    Google Scholar 

  • Gårding, L. (1985): Hyperbolic Differential Operators, in Jäger, W.; Moser, J.; Rem-mert, R. (Hrsgb.): Perspectives in Mathematics, Anniversary of Oberwolfach 1984, Birkhäuser Verlag, Basel.

    Google Scholar 

  • Harish-Chandra (1947): On Relativistic Wave Equations, Phys. Rev. 71 793.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hille, E.; Phillips, R.S. (1957): Functional Analysis and Semi-Groups, American Mathematical Society.

    Google Scholar 

  • Hörmander, L. (1984): The Analysis of Linear Partial Differential Operators, Volume I–IV, Springer-Verlag, Berlin.

    Google Scholar 

  • Kasper, U. (1986): On the importance of quantum mechanics for the axiomatic approach to the theory of gravitation, in Proceedings of the Conference on Differential Geometry and its Aopplications, in August 1986 in Brno, CSSR.

    Google Scholar 

  • Kemmer, N. (1939): The particle aspect of meson theory, Proc. Roy. Soc. A173 91.

    Google Scholar 

  • Komura, T. (1968): Semigroups of Operators in Locally Convex Spaces, J. Functional Analysis 2 258

    Article  MathSciNet  MATH  Google Scholar 

  • Liebscher, D.-E. (1985a): The Geometry of the Dirac Equation, Ann. Physik 42 35

    Article  ADS  MATH  Google Scholar 

  • Loinger, A. (1985): Weylian geometry and first order wave equations, Nouvo Cim. 88B 9

    Google Scholar 

  • Matsumoto, M. (1970): The Theory of Finsler Connections, Publications of the Study Group of Geometry.

    Google Scholar 

  • Meyer, R.; Schroeter, G. (1981): The Application of Differential Geometry to Ray Acoustics in Inhomogeneous and Moving Media, Acustica 47 105.

    MathSciNet  MATH  Google Scholar 

  • Nono, T. (1971): Generalised Clifford algebras and linearisations of a partial differential equation. in Ramakrishnan, A. (ed.): Proceedings of the Conference on “Clifford-Algebra, its Generalisations and Applications”, Matscience, The Institute of Mathematical Sciences, Madras.

    Google Scholar 

  • Rafanelli, K.; Schiller, R. (1964): Classical Motions of Spin 1/2 Particles, Phys. Rev. 135 B279.

    Google Scholar 

  • Rauch, H. (1983): in S. Kamefuchi (ed.): Proceedings of the International Symposium on Foundations of Quantum Mechantcs, Tokyo.

    Google Scholar 

  • Reichenbach, H. (1928): Philosophie der Raum-Zeit-Lehre; deGruyter, Berlin

    Book  MATH  Google Scholar 

  • Riemann, B. (1854): Ueber die Hypothesen, die der Geometrie zugrunde liegen, Habilitationsvortrag, in Weber, H. (Hersg.): Bernhard Riemanns gesammelte mathematische Werke und wissenschaftlicher Nachlass, B.G. Teubner, Leipzig 1876.

    Google Scholar 

  • Roby, N. (1969): Algèbres de Clifford des formes polynomes, C.R. Acad. Sc. Paris A268 484.

    Google Scholar 

  • Rubinow, S.J.; Keller, J.B. (1963): Asymptotic Solution of the Dirac Equation, Phys. Rev. 131 2789.

    Article  MathSciNet  ADS  Google Scholar 

  • Rund, H. (1959): The Differential Geometry of Finsler Spaces, Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Svendsen, E.C. (1982): Unitary one-parameter groups with finite speed of propagation, Proc. Amer. Math. Soc. 84, 357.

    Google Scholar 

  • Wightman, A.S. (1970): Relativistic Wave Equations as Singular Hyperbolic Systems, in Spencer, D.C. (ed.): Partial Differential Equations, Proceedings of the Symposium in Pure Mathematics, American Mathematical Society.

    Google Scholar 

  • Yoshida, K. (1971): Functional Analysis, Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lämmerzahl, C. (1990). The Geometry of Matter Fields. In: Audretsch, J., de Sabbata, V. (eds) Quantum Mechanics in Curved Space-Time. NATO ASI Series, vol 230. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3814-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3814-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6701-7

  • Online ISBN: 978-1-4615-3814-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics