Skip to main content

Anaerobic Production of Single-Domain Magnetite by the Marine, Magnetotactic Bacterium, Strain MV-1

  • Chapter
Iron Biominerals

Abstract

Bacteria whose direction of motility is influenced by the earth’s and applied magnetic fields are collectively referred to as the magnetotactic bacteria (Blakemore, 1975). These microorganisms represent a morphologically diverse group of bacteria that are ubiquitous in aquatic habitats and are apparently worldwide in distribution (Blakemore, 1982; Blakemore et al., 1989). Despite their ubiquity, the magnetotactic bacteria have proven notoriously difficult to isolate and grow in axenic culture (Moench and Konetzka, 1978; Blakemore, 1982). Since the report of their discovery in 1975 (Blakemore, 1975), only one species has been isolated and studied in any detail, Aquaspirillum magnetotacticum (Maratea and Blakemore, 1981). Recently, however, a second isolate has been obtained and designated strain MV-1 (Bazylinski et al., 1988). This organism, unlike A. magnetotacticum, is marine in origin and produces intracellular magnetite (Fe3O4) under strict anaerobic conditions (Bazylinski et al., 1988) and is the subject of this paper. A third species has apparently been isolated by Matsunaga and coworkers (T. Matsunaga, personal communication) but has only been described as a microaerophilic spirillum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balkwill, D. L., Maratea, D., and Blakemore, R. P., 1980, Ultrastructure of a magnetotactic spirillum, J. Bacteriol., 141: 1399.

    PubMed  CAS  Google Scholar 

  • Bazylinski, D. A., and Blakemore, R. P., 1983, Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum, Appl. Environ. Microbiol, 46: 1118.

    PubMed  CAS  Google Scholar 

  • Bazylinski, D. A., Frankel, R B., and Jannasch, H. W., 1988, Anaerobic magnetite production by a marine magnetotactic bacterium, Nature (London), 334: 518.

    Article  Google Scholar 

  • Blakemore, R. P., 1975, Magnetotactic bacteria, Science, 190: 377.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, R. P., 1982, Magnetotactic bacteria, Ann. Rev. Microbiol., 36: 217.

    Article  CAS  Google Scholar 

  • Blakemore, R. P., and Canale-Parola, E., 1973, Morphological and ecological characteristics of Spirochaeta plicatilis, Arch. Microbiol., 89: 273.

    CAS  Google Scholar 

  • Blakemore, R. P., Maratea, D., and Wolfe, R. S., 1979, Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium, J. Bacteriol., 140: 720.

    PubMed  CAS  Google Scholar 

  • Blakemore, R. P., Short, K. A., Bazylinski, D. A., Rosenblatt, C., and Frankel, R. B., 1985, Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum, Geomicrobiol. J., 4: 53.

    Article  CAS  Google Scholar 

  • Blakemore, R. P., Blakemore, N. A., Bazylinski, D. A., and Moench, T. T., 1989, Magnetotactic bacteria, in: “Bergey’s Manual of Systematic Bacteriology”, Vol. 3, J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds., Williams and Wilkins.

    Google Scholar 

  • Butler, R. F., and Banerjee, S. K., 1975, Theoretical single domain grain size in magnetite and titanomagnetite, J. Geophys. Res., 80: 4049.

    Article  CAS  Google Scholar 

  • Chang, S.-B. R., and Kirschvink, J. L., 1984, Bacterial magnetofossils as probes of precambrian ecological and biochemical evolutionary events, Geol. Soc. Am. Bull., 16: 468.

    Google Scholar 

  • Chang, S.-B. R., Kirschvink, J. L., and Stoltz, J. F., 1987, Biogenic magnetite as a primary remanence carrier in limestone deposits, Phys. Earth Planet Inter., 46: 289.

    Article  Google Scholar 

  • Cleland, W. W., 1964, Dithiothreitol, a new protective reagent for SH groups, Biochemistry, 3: 480.

    Article  PubMed  CAS  Google Scholar 

  • Costilow, R. N., 1981, Biophysical factors in growth, in: “Manual of Methods for General Bacteriology”, P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips, eds., American Society for Microbiology.

    Google Scholar 

  • Frankel, R. B., Blakemore, R. P., and Wolfe, R. S., 1979, Magnetite in freshwater magnetotactic bacteria, Science, 203: 1355.

    Article  PubMed  CAS  Google Scholar 

  • Frankel, R. B., and Blakemore, R. P., 1980, Navigational compass in magnetic bacteria, J. Magn. Mag. Mat., 15–18: 1562.

    Google Scholar 

  • Frankel, R. B., Papaefthymiou, G. C., Blakemore, R. P., and O’Brien, W., 1983, Fe3O4 precipitation in magnetotactic bacteria, Biochim. Biophys. Acta, 763: 147.

    Article  CAS  Google Scholar 

  • Gorby, Y. A., Beveridge, T. J., and Blakemore, R. P., 1988, Characterization of the bacterial magnetosome membrane, J. Bacteriol., 170: 834.

    PubMed  CAS  Google Scholar 

  • Hochstein, L. I., and Tomlinson, G. A., 1988, The enzymes associated with denitrification, Ann. Rev. Microbiol., 42: 231.

    Article  CAS  Google Scholar 

  • Holm, R. H., 1987, Metal-centered oxygen atom transfer reactions, Chem. Rev., 87: 1401.

    Article  CAS  Google Scholar 

  • Jacob, H.E., 1970, Redox potential, in: “Methods in Microbiology”, Vol. 2, J. R. Norris and D. W. Ribbons, eds., Academic Press, Inc.

    Google Scholar 

  • Jolly, W. L., 1964, “The Inorganic Chemistry of Nitrogen”, W. A. Benjamin, Inc.

    Google Scholar 

  • Jørgensen, K. S., Jensen, H. B., and Sørensen, J., 1984, Nitrous oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations, Can. J. Microbiol., 30: 1073.

    Article  Google Scholar 

  • Karlin, R., Lyle, M., and Heath, G. R., 1987, Authigenic magnetite formation in suboxic marine sediments, Nature (London), 326: 490.

    Article  CAS  Google Scholar 

  • la Rivière, J. W. M., and Kuenen, J. G., 1989, Genus Thiospira, in: “Bergey’s Manual of Systematic Bacteriology”, Vol. 3, J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds., Williams and Wilkins.

    Google Scholar 

  • Lovley, D. R., Stoltz, J. F., Nord Jr., G. L., and Phillips, E. J. P., 1987, Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature (London), 330: 252.

    Article  CAS  Google Scholar 

  • Luria, S. E., 1960, The bacterial protoplasm: composition and organization, in: “The Bacteria”, Vol. 1, I. C. Gunsalus and R. Y. Stanier, eds., Academic Press, New York.

    Google Scholar 

  • Lyman, J., and Fleming, R. H., 1940, Composition of seawater, J. Mar. Res., 3: 134.

    CAS  Google Scholar 

  • Mann, S., 1985, Structure, morphology and crystal growth of bacterial magnetite, in: “Magnetite Biomineralization and Magnetoreception in Organisms”, J. L. Kirschvink, D. S. Jones, and B. J. MacFadden, eds., Plenum Press, New York.

    Google Scholar 

  • Mann, S., Frankel, R. B., and Blakemore, R. P., 1984a, Structure, morphology and crystal growth of bacterial magnetite, Nature (London), 310: 405.

    Article  Google Scholar 

  • Mann, S., Moench, T. T., and Williams, R. J. P., 1984b, A high resolution electron microscopic investigation of bacterial magnetite. Implications for crystal growth, Proc. R Soc. Lond. B, 221: 385.

    Article  CAS  Google Scholar 

  • Mann, S., Sparks, N. H. C., and Blakemore, R. P., 1987, Ultrastructure and characterization of anisotropic magnetite inclusions in magnetotactic bacteria, Proc. R. Soc. Lond. B, 231: 469.

    Article  CAS  Google Scholar 

  • Maratea, D., and Blakemore, R. P., 1981, Aquaspirillurn magnetotacticum sp. nov., a magnetic spirillum, Int. J. Syst. Bacteriol., 31: 452.

    Article  Google Scholar 

  • Matsuda, T., Endo, J., Osakabe, N., and Tonomura, A., 1983, Morphology and structure of biogenic magnetite particles, Nature (London), 302: 411.

    Article  CAS  Google Scholar 

  • Moench, T. T., and Konetzka, W. A., 1978, A novel method for the isolation and study of a magnetic bacterium, Arch. Microbiol., 119: 203.

    Article  PubMed  CAS  Google Scholar 

  • Molisch, H., 1912, Neue farblose Schwefelbakterien, Zbl. Bakt. II Abt., 33: 55.

    Google Scholar 

  • Moskowitz, B. M., Frankel, R. B., Flanders, P. J., Blakemore, R. P., and Schwartz, B. B., 1988, Magnetic properties of magnetotactic bacteria, J. Magn. Magn. Mat., 73: 273.

    Article  Google Scholar 

  • Moskowitz, B. M., Frankel, R. B., Bazylinski, D. A., Jannasch, H. W., and Lovley, D. R., 1989, A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria, Geophys. Res. Lett., 16: 665.

    Article  CAS  Google Scholar 

  • Rhoads, D. C., Mulsow, S. G., Gutschick, R., Baldwin, C. T., and Stolz, J. F., 1990, The dysaerobic zone revisited; a magnetic facies?, J. Geol. Soc. (London), submitted for publication.

    Google Scholar 

  • Seitzinger, S., Nixon, S. W., Pilson, N. E. Q., and Burke, S., 1980, Denitrification and N2O production in nearshore marine sediments, Geochim. Cosmochim. Acta, 44: 1853.

    Article  CAS  Google Scholar 

  • Seitzinger, S., Pilson, N. E. Q., and Nixon, S. W., 1983, Nitrous oxide production in nearshore marine sediments, Science, 222: 1244.

    Article  PubMed  CAS  Google Scholar 

  • Seitzinger, S., Nixon, S. W., and Pilson, M. E. Q., 1984, Denitrification and nitrous oxide production in a coastal marine ecosystem, Limnol. Oceanogr., 29: 73.

    Article  CAS  Google Scholar 

  • Sørensen, J., 1978, Occurrence of nitric and nitrous oxides in a coastal marine sediment, Appl. Environ. Microbiol., 36: 809.

    PubMed  Google Scholar 

  • Sparks, N. H. C., Mann, S., Bazylinski, D. A., Lovley, D. R., Jannasch, H. W., and Frankel, R. B., 1990, Structure and morphology of anaerobically-produced magnetite by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium, Earth Planet. Sci. Lett., in press.

    Google Scholar 

  • Stolz, J. F., Lovley, D. R., and Haggerty, 1990, Biogenic magnetite and the magnetization of sediments, J. Geophys. Res., in press.

    Google Scholar 

  • Towe, K. M., and Moench, T. T., 1981, Electron optical characterization of bacterial magnetite, Earth Planet. Sci. Lett, 52: 213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bazylinski, D.A. (1991). Anaerobic Production of Single-Domain Magnetite by the Marine, Magnetotactic Bacterium, Strain MV-1. In: Frankel, R.B., Blakemore, R.P. (eds) Iron Biominerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3810-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3810-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6699-7

  • Online ISBN: 978-1-4615-3810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics